专题01 构造等边三角形 (教师版)备战2020年中考几何压轴题分类导练学霸冲冲冲shop348121278.taobao.com.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题01 构造等边三角形 教师版备战2020年中考几何压轴题分类导练学霸冲冲冲shop348121278.taobao.com 专题 01 构造 等边三角形 教师版 备战 2020 年中 几何 压轴
- 资源描述:
-
1、专题1:构造等边三角形【典例引领】例:在菱形ABCD中,ABC=60,E是对角线AC上一点,F是线段BC延长线上一点,且CF=AE,连接BE、EF。(1)若E是线段AC的中点,如图1,易证:BE=EF(不需证明);(2)若E是线段AC或AC延长线上的任意一点,其它条件不变,如图2、图3,线段BE、EF有怎样的数量关系,直接写出你的猜想;并选择一种情况给予证明。【答案】(1)证明见解析;(2)证明见解析【分析】首先构造全等三角形,过点E作EGBC,可得到AGE是等边三角形,就可证出BGEECF,进而得出BE=EF【解答】证明:(2)图2:BE=EF图3:BE=EF图2证明如下:过点E作EGBC,
2、交AB于点G四边形ABCD为菱形AB=BC又ABC=60ABC是等边三角形 AB=AC ACB=60 又EGBC AGE=ABC=60 又BAC=60 AGE是等边三角形 AG=AE,BG=CE又CF=AE GE=CF又BGE=ECF=120 BGEECF(SAS) BE=EF图3证明如下:过点E作EGBC交AB延长线于点G四边形ABCD为菱形 AB=BC 又ABC=60 ABC是等边三角形 AB=AC ACB=60 又EGBC AGE=ABC=60又BAC=60AGE是等边三角形AG=AE BG=CE又CF=AEGE=CF AGE =ECF=60 BGEECF(SAS)BE=EF【强化训练】
3、1如图,ABC中,AB=BC,BDAC于点D,FAC=12ABC,且FAC在AC下方点P,Q分别是射线BD,射线AF上的动点,且点P不与点B重合,点Q不与点A重合,连接CQ,过点P作PECQ于点E,连接DE(1)若ABC=60,BP=AQ如图1,当点P在线段BD上运动时,请直接写出线段DE和线段AQ的数量关系和位置关系;如图2,当点P运动到线段BD的延长线上时,试判断中的结论是否成立,并说明理由;(2)若ABC=260,请直接写出当线段BP和线段AQ满足什么数量关系时,能使(1)中的结论仍然成立(用含的三角函数表示)【答案】(1)DE=12AQ,DEAQ,理由见解析; EAQ,DE=12AQ,
4、理由见解析;(2)AQ=2BPsin,理由见解析.【分析】(1)先判断出ABC是等边三角形,进而判断出CBP=CAQ,即可判断出BPCAQC,再判断出PCQ是等边三角形,进而得出CE=QE,即可得出结论;同的方法即可得出结论;(2)先判断出,PAQ=90ACQ,BAP=90ACQ,进而得出BCP=ACQ,即可判断出进而判断出BPCAQC,最后用锐角三角函数即可得出结论【解答】(1)DE=12AQ,DEAQ,理由:如图1,连接PC,PQ,在ABC中,AB=AC,ABC=60,ABC是等边三角形,ACB=60,AC=BC,AB=BC,BDAC,AD=CD,ABD=CBD=12BAC,CAF=12A
5、BC,CBP=CAQ,在BPC和AQC中,BC=ACCBP=CAQBP=AQ,BPCAQC(SAS),PC=QC,BPC=ACQ,PCQ=PCA+AQC=PCA+BCP=ACB=60,PCQ是等边三角形,PECQ,CE=QE,AD=CD,DE=12AQ,DEAQ;DEAQ,DE=12AQ,理由:如图2,连接PQ,PC,同的方法得出DEAQ,DE=12AQ;(2)AQ=2BPsin,理由:连接PQ,PC,要使DE=12AQ,DEAQ,AD=CD,CE=QE,PECQ,PQ=PC,易知,PA=PC,PA=PE=PC以点P为圆心,PA为半径的圆必过A,Q,C,APQ=2ACQ,PA=PQ,PAQ=P
6、QA=12(180APQ)=90ACQ,CAF=ABD,ABD+BAD=90,BAQ=90,BAP=90PAQ=90ACQ,易知,BCP=BAP,BCP=ACQ,CBP=CAQ,BPCAQC,BPAQ=BCAC=BC2CD,在RtBCD中,sin=CDBC,AQBP=2CDBC=2sin,AQ=2BPsin2如图,在RtABC中,ACB=90,A=30,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P顺时针旋转60,得到线段PQ,连接BQ(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系(2)如图2,当点P在CB延长线上时,(1
7、)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若BPO=15,BP=4,请求出BQ的长【答案】(1)BQ=CP;(2)成立:PC=BQ;(3)43-4【分析】(1)结论:BQ=CP如图1中,作PHAB交CO于H,可得PCH是等边三角形,只要证明POHQPB即可;(2)成立:PC=BQ作PHAB交CO的延长线于H证明方法类似(1);(3)如图3中,作CEOP于E,在PE上取一点F,使得FP=FC,连接CF设CE=CO=a,则FC=FP=2a,EF=3a,在RtPCE中,表示出PC,根据PC+CB=4,可得方程(6+2)a+2a=4,求出a即可解
8、决问题;【解答】解:(1)结论:BQ=CP理由:如图1中,作PHAB交CO于H在RtABC中,ACB=90,A=30,点O为AB中点,CO=AO=BO,CBO=60,CBO是等边三角形,CHP=COB=60,CPH=CBO=60,CHP=CPH=60,CPH是等边三角形,PC=PH=CH,OH=PB,OPB=OPQ+QPB=OCB+COP,OPQ=OCP=60,POH=QPB,PO=PQ,POHQPB,PH=QB,PC=BQ(2) 成立:PC=BQ理由:作PHAB交CO的延长线于H在RtABC中,ACB=90,A=30,点O为AB中点,CO=AO=BO,CBO=60,CBO是等边三角形,CHP
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-827340.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
