专题10.7二项分布、超几何分布及正态分布(解析版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
4 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题 10.7 二项分布 几何 分布 正态分布 解析
- 资源描述:
-
1、专题10.7二项分布、超几何分布及正态分布题型一两点分布题型二超几何分布题型三二项分布题型四二项分布的概率最大问题题型五二项分布与超几何分布的综合题型六正态分布求概率题型七正态分布的对称题型八正态分布的实际应用题型一两点分布例1随机变量服从两点分布,且,令,则()ABCD【答案】D【分析】根据两点分布的性质求出,则.【详解】因为随机变量服从两点分布,且,所以,由,所以.故选:D例2已知离散型随机变量X服从两点分布,且,则随机变量X的方差为 【答案】【分析】因为离散型随机变量X服从两点分布,设,所以,由题意可求出,所以可求出【详解】因为离散型随机变量X服从两点分布,设,所以,所以,代入有:,解得
2、:,因为离散型随机变量X服从两点分布,所以.故答案为:.练习1已知离散型随机变量X的分布列服从两点分布,满足,且,则()ABCD【答案】C【分析】根据两点分布的性质可得,结合题意求得,再根据两点分布的期望公式即可得解.【详解】解:因为随机变量X的分布列服从两点分布,所以,则,解得或,又因,所以,则,所以.故选:C.练习2某企业拟定4种改革方案,经统计它们在该企业的支持率分别为,用“”表示员工支持第种方案,用“”表示员工不支持第种方案,那么方差,的大小关系为()ABCD【答案】D【分析】由题意可知:随机变量服从两点分布,由两点分布的方差公式可解.【详解】由题意可知:用“”表示员工支持第种方案,用
3、“”表示员工不支持,第种方案,所以随机变量服从两点分布,则,所以,D选项正确.故选:D练习3(多选)若随机变量服从两点分布,其中,则下列结论正确的是( )ABCD【答案】AB【分析】求出,即可求出、,再根据期望与方差的性质计算可得.【详解】依题意,所以,所以, .所以, , ,所以AB选项正确,CD选项错误.故选:AB练习4(多选)随机变量服从两点分布,若,则下列结论正确的有()ABCD【答案】ABD【分析】根据两点分布的定义以及期望,方差的性质即可解出【详解】因为随机变量服从两点分布,所以,故,因此,所以正确的是ABD故选:ABD练习5已知随机变量服从两点分布,且,那么 【答案】/0.5【分
4、析】根据概率之和为1即可求解.【详解】由题意可知或,由于,所以,故答案为:题型二超几何分布例3(多选)某单位推出了道有关二十大的测试题供学习者学习和测试,乙能答对其中的道题,规定每次测试都是从这道题中随机抽出道,答对一题加分,答错一题或不答减分,最终得分最低为分,则下列说法正确的是()A乙得分的概率是B乙得分的概率是C乙得分的概率是D乙得分的概率是【答案】ABC【分析】根据古典概型概率公式结合组合数计算即可.【详解】设乙的得分为,则由题意的所有可能取值为0,10,25,40,所以,故选:ABC例4某研究小组为研究经常锻炼与成绩好差的关系,从全市若干所学校中随机抽取100名学生进行调查,其中有体
5、育锻炼习惯的有45人经调查,得到这100名学生近期考试的分数的频率分布直方图记分数在600分以上的为优秀,其余为合格(1)请完成下列列联表根据小概率值的独立性检验,分析成绩优秀与体育锻炼有没有关系经常锻炼不经常锻炼合计合格25优秀10合计100(2)现采取分层抽样的方法,从这100人中抽取10人,再从这10人中随机抽取5人进行进一步调查,记抽到5人中优秀的人数为X,求X的分布列附:,其中0.0500.0100.001k3.8416.63510.828【答案】(1)列联表见解析;成绩优秀与是否经常体育锻炼有关联(2)分布列见解析【分析】(1)根据题意,得到列联表,求得的值,结合附表,即可得到结论
6、;(2)根据题意,求得抽取的10人中合格有人,优秀的为人,得到服从超几何分布,得出的可能值,求得相应的概率,列出分布列.【详解】(1)解:根据题意,得到列联表经常锻炼不经常锻炼合计合格254570优秀201030合计4555100零假设:成绩是否优秀与是否经常体育锻炼无关,可得根据小概率值的独立性检验,推断不成立,所以的把握认为成绩优秀与是否经常体育锻炼有关联.(2)解:根据频率分布直方图,可得大于600分的频率为,小于600分的频率为,所以由分层抽样知,抽取的10人中合格有人,优秀的为人,则从这10人中随机抽取5人,优秀人数服从超几何分布,由题意的可能值为0,1,2,3可得,所以随机变量分布
7、列为X0123P练习6第三十一届世界大学生夏季运动会于2023年8月8日晚在四川省成都市胜利闭幕来自113个国家和地区的6500名运动员在此届运动会上展现了青春力量,绽放青春光彩,以饱满的热情和优异的状态谱写了青春、团结、友谊的新篇章外国运动员在返家时纷纷购买纪念品,尤其对中国的唐装颇感兴趣现随机对200名外国运动员(其中男性120名,女性80名)就是否有兴趣购买唐装进行了解,统计结果如下:有兴趣无兴趣合计男性运动员8040120女性运动员404080合计12080200(1)是否有的把握认为“外国运动员对唐装感兴趣与性别有关”;(2)按分层抽样的方法抽取6名对唐装有兴趣的运动员,再从中任意抽
8、取3名运动员作进一步采访,记3名运动员中男性有名,求的分布列与数学期望参考公式:临界值表:0.1500.1000.0500.0250.0100.0012.0722.7063.8415.0246.63510.828【答案】(1)没有的把握认为“外国运动员对唐装感兴趣与性别有关(2)分布列见解析,期望为2【分析】(1)根据卡方的计算即可求解,(2)由超几何分布的概率公式求解概率,即可得分布列.【详解】(1)由已知故没有的把握认为“外国运动员对店装感兴趣与性别有关”(2)按分层抽样的方法抽取6名对唐装有兴趣的运动员,则其中男性运动员4名,女性运动员2名,则的分布列如下表123练习7某乒乓球队训练教官
9、为了检验学员某项技能的水平,随机抽取100名学员进行测试,并根据该项技能的评价指标,按分成8组,得到如图所示的频率分布直方图(1)求a的值,并估计该项技能的评价指标的中位数(精确到0.1);(2)若采用分层抽样的方法从评价指标在和内的学员中随机抽取12名,再从这12名学员中随机抽取5名学员,记抽取到学员的该项技能的评价指标在内的学员人数为,求的分布列与数学期望【答案】(1),(2)分布列见解析;期望为【分析】(1)由频率分布直方图概率之和为求出,再由频率直方图中位数的计算方法求解即可;(2)求出的可能取值,及其对应的概率,即可求出分布列,再由数学期望公式即可得出答案.【详解】(1)由直方图可知
10、,解得因为,所以学员该项技能的评价指标的中位数在内设学员该项技能的评价指标的中位数为,则,解得(2)由题意可知抽取的12名学员中该项技能的评价指标在内的有4名,在内的有8名由题意可知的所有可能取值为,则的分布列为01234练习8一个口袋中有4个白球,2个黑球,每次从袋中取出一个球(1)若不放回的取2次球,求在第一次取出白球的条件下,第二次取出的是黑球的概率;(2)若不放回的取3次球,求取出白球次数X的分布列及.【答案】(1)(2)分布列见解析,2【分析】(1)问题相当于“从3个白球,2个黑球中取一次球,求取到黑球的概率”,进而求得.(2)不放回的依次取出3个球,则取到白球次数X的可能取值为1,
11、2,3,计算出各自对应的概率,求得X的分布列,从而利用公式求得【详解】(1)问题相当于“从3个白球,2个黑球中取一次球,求取到黑球的概率”,所以所求概率;(2)不放回的依次取出3个球,则取到白球次数X的可能取值为1,2,3,则;.则X的分布列为:故.练习9某公司生产一种电子产品,每批产品进入市场之前,需要对其进行检测,现从某批产品中随机抽取9箱进行检测,其中有5箱为一等品.(1)若从这9箱产品中随机抽取3箱,求至少有2箱是一等品的概率;(2)若从这9箱产品中随机抽取3箱,记表示抽到一等品的箱数,求的分布列和期望.【答案】(1)(2)分布列见解析,【分析】(1)有古典概型概率计算公式以及组合数的
12、计算即可求解.(2)利用超几何分布的知识求得分布列以及期望.【详解】(1)设从这9箱产品中随机抽取的3箱产品中至少有2箱是一等品的事件为,则,因此从这9箱产品中随机抽取3箱,求至少有2箱是一等品的概率为.(2)由题意可知的所有可能取值为,由超几何分布概率公式得,所以的分布列为:0123所以.练习10下表为某班学生理科综合能力测试成绩(百分制)的频率分布表,已知在分数段内的学生人数为21.分数段频率0.10.150.20.20.150.1*(1)求测试成绩在分数段内的人数;(2)现欲从分数段内的学生中抽出2人参加物理兴趣小组,若其中至少有一名男生的概率为,求分数段内男生的人数;(3)若在分数段内
13、的女生为4人,现欲从分数段内的学生中抽出3人参加培优小组,为分配到此组的3名学生中男生的人数求的分布列及期望【答案】(1)6(2)2(3)分布列见解析,【分析】(1)利用在分数段内的学生数为21人求出高二年级某班学生总数,再利用频率和为1求出,两数相乘可得答案;(2)设男生有人,根据抽出2人这2人都是男生的概率为,解得可得答案;(3)求出在分数段内的学生人数及男生人数,可得的取值及对应的概率,可得分布列和期望.【详解】(1)某班学生共有人,因为,所以,所以测试成绩在分数段内的人数为人.(2)由(1)知在分数段内的学生有6人,设男生有人,若抽出2人至少有一名男生的概率为,则,解得,所以在分数段内
14、男生有2人.(3)在分数段内的学生有人,所以男生有2人,X的取值有,X的分布列为012.题型三二项分布例5某地区对某次考试成绩进行分析,随机抽取100名学生的A,B两门学科成绩作为样本将他们的A学科成绩整理得到如下频率分布直方图,且规定成绩达到70分为良好已知他们中B学科良好的有50人,两门学科均良好的有40人(1)根据所给数据,完成下面的22列联表,并根据列联表,判断是否有95%的把握认为这次考试学生的A学科良好与B学科良好有关;B学科良好B学科不够良好合计A学科良好A学科不够良好合计(2)用样本频率估计总体概率,从该地区参加考试的全体学生中随机抽取3人,记这3人中A,B学科均良好的人数为随
15、机变量X,求X的分布列与数学期望附:,其中0.150.100.050.0250.0100.0050.0010.152.0722.7063.8415.0246.6357.87910.8282.072【答案】(1)填表见解析,有95%把握认为A学科良好与B学科良好有关(2)分布列见解析,期望为【分析】(1)根据频率分布直方图计算可得出A学科良好的人数,进而即可得出22列联表.根据公式计算得出的值,比较即可根据独立性检验得出答案;(2)根据(1)得出AB学科均良好的概率,可知.然后计算得出取不同值的概率,列出分布列,根据期望公式即可得出答案.【详解】(1)由直方图可得A学科良好的人数为,所以22列联
16、表如下:B学科良好B学科不够良好合计A学科良好403070A学科不够良好102030合计5050100假设:A学科良好与B学科良好无关,所以有95%把握认为A学科良好与B学科良好有关(2)AB学科均良好的概率,X的可能取值为0,1,2,3,且所以,所以X的分布列为X0123P因为,所以例6近年来,短视频作为以视频为载体的聚合平台,社交属性愈发突出,在用户生活中覆盖面越来越广泛,已逐渐成为社交平台发展的新方向,同时出现了利用短视频平台进行直播销售的模式.已知甲公司和乙公司两家购物平台所售商品类似,存在竞争关系.现对某时段100名观看过这两家短视频的用户与使用这两家购物平台购物的情况进行调查,得到
17、如下数据:选择甲公司购物平台选择乙公司购物平台合计用户年龄段为岁302050用户年龄段为岁203050合计5050100(1)能否有的把握认为使用哪家购物平台购物与观看这两家短视频的用户的年龄有关?(2)为了了解用户观看两家短视频后选择哪家公司购物的原因,用频率近似概率,从观看过这两家短视频的年龄段为1924岁和2534岁的用户中各抽取2名用户进行回访,求抽出的4人中选择甲公司购物的人数恰好为2的概率.参考公式:,其中.0.10.050.010.0050.0012.7063.8416.6357.87910.828【答案】(1)有的把握认为使用哪家购物平台购物与观看这两家短视频的用户的年龄有关联
18、(2)【分析】(1)根据题意中的数据,由卡方的计算公式,结合独立性检验的思想即可写结论;(2)由题意,根据二项分布的定义和二项分布求概率公式计算即可求解.【详解】(1)根据列联表中的数据,则,所以有的把握认为使用哪家购物平台购物与观看这两家短视频的用户的年龄有关联.(2)设从观看过这两家短视频的年龄段为1924岁的用户中抽取的2名用户中选择甲公司购物的人数为,则.设从观看过这两家短视频的年龄段为2534岁的用户中抽取的2名用户中选择甲公司购物的人数为,则.设“抽出的4人中选择甲公司购物的人数恰好为2”为事件A,则.因为,所以.练习11某数学兴趣小组设计了一个开盲盒游戏:在编号为1到4号的四个箱
19、子中随机放入奖品,每个箱子中放入的奖品个数满足,每个箱子中所放奖品的个数相互独立游戏规定:当箱子中奖品的个数超过3个时,可以从该箱中取走一个奖品,否则从该箱中不取奖品每个参与游戏的同学依次从1到4号箱子中取奖品,4个箱子都取完后该同学结束游戏甲、乙两人依次参与该游戏(1)求甲能从1号箱子中取走一个奖品的概率;(2)设甲游戏结束时取走的奖品个数为,求的概率分布与数学期望;(3)设乙游戏结束时取走的奖品个数为,求的数学期望【答案】(1)(2)分布列见解析;期望为(3)【分析】(1)先求得,然后求得的概率分布,进而求得甲能从1号箱子中取走一个奖品的概率.(2)根据二项分布的知识求得的概率分布,进而求
20、得数学期望.(3)根据二项分布的期望计算公式求得正确答案.【详解】(1)因为每个箱子中放入的奖品个数满足,所以,则,所以的概率分布为:12345P设事件为甲能从1号箱子中取走一个奖品,则,所以甲能从1号箱子中取走一个奖品的概率为.(2),因为甲能从每个箱子中取走一个奖品的概率为,所以,所以,X的概率分布为:01234所以X的数学期望为或(3)乙能从箱子中取到奖品必须箱子中最初有5个奖品,即乙能从每个箱子中取走一个奖品的概率为,所以,所以Y的数学期望为练习12设甲、乙两位同学上学期间,每天之前到校的概率均为假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立(1)用表示甲同学上学期
21、间的三天中之前到校的天数,求随机变量的分布列;(2)设为事件“上学期间的三天中,甲同学在之前到校的天数比乙同学在之前到校的天数恰好多”,求事件发生的概率【答案】(1)分布列见解析(2)【分析】(1)根据二项分布概率公式可求得每个取值对应的概率,由此可得分布列;(2)事件,根据互斥、独立事件、和事件概率公式可求得结果.【详解】(1)由题意知:,则所有可能的取值为,;的分布列为:(2)设乙同学上学期间的三天中之前到校的天数为,则,事件由题意知:事件与互斥,且事件与,事件与均相互独立,.练习13某公司使用甲、乙两台机器生产芯片,已知每天甲机器生产的芯片占产量的六成,且合格率为;乙机器生产的芯片占产量
22、的四成,且合格率为,已知两台机器生产芯片的质量互不影响. 现对某天生产的芯片进行抽样.(1)从所有芯片中任意抽取一个,求该芯片是不合格品的概率;(2)现采用有放回的方法随机抽取3个芯片,记其中由乙机器生产的芯片的数量为,求的分布列以及数学期望.【答案】(1)0.056(2)分布列见解析,【分析】(1)根据全概率公式即可求得答案;(2)确定,由二项分布的概率计算可求得分布列,根据期望公式即可求得数学期望.【详解】(1)记事件表示芯片来自甲机器生产,事件表示芯片来自乙机器生产,事件表示取到的是合格品;则.(2)由题意得,故,所以的分布列为0123故.练习14卡塔尔世界杯的吉祥物“拉伊卜”引发网友和
23、球迷喜爱,并被亲切地称为“饺子皮”.某公司被授权销售以“拉伊卜”为设计主题的精制书签.该精制书签的生产成本为50元/个,为了确定书签的销售价格,该公司对有购买精制书签意向的球迷进行了调查,共收集了200位球迷的心理价格来估计全部球迷的心理价格分布.这200位球迷的心理价格对应人数比练习分布如下图:若只有在精制书签的销售价格不超过球迷的心理价格时,球迷才会购买精制书签.公司采用常见的饥饿营销的方法刺激球迷购买产品,规定每位球迷最多只能购买一个该精制书签.设每位球迷是否购买该精制书签相互独立,精制书签的销售价格为元/个().(1)若,已知某时段有3名球迷有购买意向而咨询公司,设为这3名球迷中购买精
24、制书签的人数,求的分布列和期望;(2)假设共有名球迷可能购买该精制书签,请比较当精制书签的售价分别定为70元和80元时,哪种售价对应的总利润的期望最大?【答案】(1)分布列见解析,(2)当精制书签的销售价格定为70元时,对应的总利润的期望最大【分析】(1)先确定购买该精制书签的概率,根据二项分布的概率得分布列与数学期望;(2)根据随机变量之间的关系确定当,时的与的关系,即可判断得结论.【详解】(1)当时,由样本数据估计球迷购买该精制书签的概率为.因每位球迷是否购买该精制书签相互独立,X的可能取值为.;其分布列为:0123其期望为.(2)设该公司销售该精制书签所得总利润为元,当时,由样本数据估计
25、球迷购买该精制书签的概率为,此时;当时,由样本数据估计球迷购买该精制书签的概率为.此时;,所以当精制书签的销售价格定为70元时,对应的总利润的期望最大.练习15“双减”政策执行以来,中学生有更多的时间参加志愿服务和体育锻炼等课后活动.某校为了解学生课后活动的情况,从全校学生中随机选取人,统计了他们一周参加课后活动的时间(单位:小时),分别位于区间,用频率分布直方图表示如下,假设用频率估计概率,且每个学生参加课后活动的时间相互独立.(1)估计全校学生一周参加课后活动的时间位于区间的概率;(2)从全校学生中随机选取人,记表示这人一周参加课后活动的时间在区间的人数,求的分布列和数学期望.【答案】(1
26、)(2)分布列见解析,【分析】(1)根据频率分布直方图计算对应的频率即为所求概率;(2)用频率估计概率,可知,利用二项分布概率公式可求得每个取值对应的概率,由此可得分布列;根据二项分布数学期望公式可求得.【详解】(1)由频率分布直方图知:人中,一周参加课后活动的事件位于区间的频率为,用频率估计概率,全校学生一周参加课后活动的时间位于区间的概率为.(2)用频率估计概率,从全校学生中随机抽取人,则该人一周参加课后活动的事件在区间的概率,则所有可能的取值为,;的分布列为:数学期望.题型四二项分布的概率最大问题例7若,则取得最大值时, .【答案】6或7【分析】根据已知条件,结合二项分布的概率公式列不等
27、式即可求解【详解】由题意可知,服从二项分布,所以,且,由不等式,即,解得,所以时,时,其中当时,所以或7时,取得最大值故答案为:6或7例8某综艺节目中,有一个盲拧魔方游戏,就是玩家先观察魔方状态并进行记忆,记住后蒙住眼睛快速还原魔方为了解某市盲拧魔方爱好者的水平状况,某兴趣小组在全市范围内随机抽取了100名盲拧魔方爱好者进行调查,得到的情况如表所示:用时/秒男性人数1721139女性人数810166以这100名盲拧魔方爱好者用时不超过10秒的频率,代替全市所有盲拧魔方爱好者用时不超过10秒的概率,每位盲拧魔方爱好者用时是否超过10秒相互独立若该兴趣小组在全市范围内再随机抽取20名盲拧魔方爱好者
28、进行测试,其中用时不超过10秒的人数最有可能(即概率最大)是()A3B4C5D6【答案】C【分析】求出1名盲拧魔方爱好者用时不超过10秒的概率,确定,即可表示出,列不等式组求最大时k的值,即可得答案.【详解】根据题意得,1名盲拧魔方爱好者用时不超过10秒的概率为,设随机抽取的20名盲拧魔方爱好者中用时不超过10秒的人数为,则,其中,时,;显然,即不可能为最大值,当时,由得,化简得,解得,又这20名盲拧魔方爱好者中用时不超过10秒的人数最有可能是5,故选:C练习16设随机变量,记,在研究的最大值时,某学习小组发现并证明了如下正确结论:若为正整数,当时,此时这两项概率均为最大值;若不为正整数,则当
29、且仅当取的整数部分时,取最大值某同学重复投掷一枚质地均匀的骰子并实时记录点数1出现的次数当投掷到第20次时,记录到此时点数1出现4次,若继续再进行80次投掷试验,则在这100次投掷试验中,点数1总共出现的次数为 的概率最大【答案】17【分析】直接根据服从二项分布,结合取整数部分可得后面80次出现点数1的次数为13概率最大,从而得解.【详解】继续再进行80次投掷试验,出现点数为1次数服从二项分布,由,结合题中结论可知,时概率最大,即后面80次中出现13次点数1的概率最大,加上前面20次中的4次,所以出现17次的概率最大.故答案为:17.练习17近年来,随着智能手机的普及,网络购物、直播带货、网上
30、买菜等新业态迅速进入了我们的生活,改变了我们的生活方式.现将一周网上买菜次数超过3次的市民认定为“喜欢网上买菜”,不超过3次甚至从不在网上买菜的市民认定为不喜欢网上买菜.某市社区为了解该社区市民网上买菜情况,随机抽取了该社区100名市民,得到的统计数据如下表所示:喜欢网上买菜不喜欢网上买菜合计年龄不超过45岁的市民401050年龄超过45岁的市民203050合计6040100(1)是否有99.9%的把握认为社区的市民是否喜欢网上买菜与年龄有关?(2)社区的市民李华周一、周二均在网上买菜,且周一从,两个买菜平台随机选择其中一个下单买菜.如果周一选择平台买菜,那么周二选择平台买菜的概率为;如果周一
31、选择平台买菜,那么周二选择平台买菜的概率为,求李华周二选择平台买菜的概率;(3)用频率估计概率,现从社区市民中随机抽取20名市民,记其中喜欢网上买菜的市民人数为,事件“”的概率为,求使取得最大值时的的值.参考公式:,其中.0.10.050.00.0050.0012.7063.8416.6357.87910.828【答案】(1)有99.9%的把握认为社区的市民是否喜欢网上买菜与年龄有关.(2)(3)12【分析】(1)根据题意,计算出的值即可求解;(2)根据概率的乘法公式求解;(3)利用二项分布求出,然后计算,可得结果.【详解】(1)零假设社区的市民是否喜欢网上买菜与年龄无关,由题可得,所以零假设
32、不成立,所以有99.9%的把握认为社区的市民是否喜欢网上买菜与年龄有关.(2)周二选择平台买菜的情况有:周一选择平台买菜,周二选择平台买菜,概率为,周一选择平台买菜,周二选择平台买菜,概率为,所以李华周二选择平台买菜的概率为.(3)由表知,喜欢网上买菜的频率为,则,所以设,令,解得,;,解得,所以当时,最大,所以使取得最大值时的的值为12.练习18为了“让广大青少年充分认识到毒品的危害性,切实提升青少年识毒防毒拒毒意识”,我市组织开展青少年禁毒知识竞赛,团员小明每天自觉登录“禁毒知识竞赛APP”,参加各种学习活动,同时热衷于参与四人赛.每局四人赛是由网络随机匹配四人进行比赛,每题回答正确得20
33、分,第1个达到100分的比赛者获得第1名,赢得该局比赛,该局比赛结束.每天的四人赛共有20局,前2局是有效局,根据得分情况获得相应名次,从而得到相应的学习积分,第1局获得第1名的得3分,获得第23名的得2分,获得第4名的得1分;第2局获得第1名的得2分,获得第234名的得1分;后18局是无效局,无论获得什么名次,均不能获得学习积分.经统计,小明每天在第1局四人赛中获得3分2分1分的概率分别为,在第2局四人赛中获得2分1分的概率分别为,.(1)设小明每天获得的得分为X,求X的分布列和数学期望;(2)若小明每天赛完20局,设小明在每局四人赛中获得第1名从而赢得该局比赛的概率为,每局是否赢得比赛相互
34、独立,请问在每天的20局四人赛中,小明赢得多少局的比赛概率最大?【答案】(1)分布列答案见解析,数学期望:(2)在每天的20局四人赛中,小明赢得5局的比赛概率最大【分析】(1)记事件表示第一局获得分,事件表示第二局获得分,的可能值为5,4,3,2,根据事件相互独立求出的分布列、数学期望;(2)设小A每天赢得的局数为,则,从而得到关于的不等式组,解之即可得解.【详解】(1)记事件表示第一局获得分,事件表示第二局获得分,这些事件相互独立,由条件知的可能值为5,4,3,2.;.则其分布列为5432所以.(2)设小明每天赢得的局数为,则易知,于是.假设赢得局的概率最大,则据条件得,即,整理得,解之得,
35、又因为,所以,因此在每天的20局四人赛中,小明赢得5局的比赛概率最大.练习19在十余年的学习生活中,部分学生养成了上课转笔的习惯某研究小组为研究转笔与学习成绩好差的关系,从全市若干所学校中随机抽取100名学生进行调查,其中有上课转笔习惯的有45人经调查,得到这100名学生近期考试的分数的频率分布直方图记分数在600分以上的为优秀,其余为合格(1)请完成下列22列联表并判断能否在犯错误的概率不超过的条件下,认为成绩是否优秀与上课是否转笔有关上课转笔上课不转笔合计合格25优秀10合计100(2)现采取分层抽样的方法,从这100人中抽取10人,再从这10人中随机抽取5人进行进一步调查,记抽到5人中合
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
