专题15二次函数与角综合问题-挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用)(原卷版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题 15 二次 函数 综合 问题 挑战 2023 年中 数学 压轴 秘笈 揭秘 全国 通用 原卷版
- 资源描述:
-
1、挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用) 专题15二次函数与角综合问题 二次函数与角综合问题,常见的主要有三种类型:1. 特殊角问题:(1) 利用特殊角的三角函数值找到线段之间的数量关系(2) 遇到特殊角可以构造特殊三角形,如遇到45构造等腰直角三角形,遇到30、60构造等边三角形,遇到90构造直角三角形2.角的数量关系问题(1)等角问题:借助特殊图形的性质、全等和相似的性质来解决;构造圆,利用圆周角的性质来解决(2)二倍角问题:利用角平分线的性质、等腰三角形的性质、对称、辅助圆等知识来解答(3)角的和差问题3.角的最值问题:利用辅助圆等知识来解答【例1】(2022西宁)如图,
2、抛物线yax2+bx+3与x轴交于点A(3,0),与y轴交于点B,点C在直线AB上,过点C作CDx轴于点D(1,0),将ACD沿CD所在直线翻折,使点A恰好落在抛物线上的点E处(1)求抛物线解析式;(2)连接BE,求BCE的面积;(3)抛物线上是否存在一点P,使PEABAE?若存在,求出P点坐标;若不存在,请说明理由【例2】(2022益阳)如图,在平面直角坐标系xOy中,抛物线E:y(xm)2+2m2(m0)的顶点P在抛物线F:yax2上,直线xt与抛物线E,F分别交于点A,B(1)求a的值;(2)将A,B的纵坐标分别记为yA,yB,设syAyB,若s的最大值为4,则m的值是多少?(3)Q是x
3、轴的正半轴上一点,且PQ的中点M恰好在抛物线F上试探究:此时无论m为何负值,在y轴的负半轴上是否存在定点G,使PQG总为直角?若存在,请求出点G的坐标;若不存在,请说明理由【例3】(2022鄂尔多斯)如图,在平面直角坐标系中,抛物线yax2+bx+2经过A(,0),B(3,)两点,与y轴交于点C(1)求抛物线的解析式;(2)点P在抛物线上,过P作PDx轴,交直线BC于点D,若以P、D、O、C为顶点的四边形是平行四边形,求点P的横坐标;(3)抛物线上是否存在点Q,使QCB45?若存在,请直接写出点Q的坐标;若不存在,请说明理由【例4】(2022菏泽)如图,抛物线yax2+bx+c(a0)与x轴交
4、于A(2,0)、B(8,0)两点,与y轴交于点C(0,4),连接AC、BC(1)求抛物线的表达式;(2)将ABC沿AC所在直线折叠,得到ADC,点B的对应点为D,直接写出点D的坐标,并求出四边形OADC的面积;(3)点P是抛物线上的一动点,当PCBABC时,求点P的坐标1(2022江岸区模拟)已知:抛物线y(x+k)(x7)交x轴于A、B(A左B右),交y轴正半轴于点C,且OBOC(1)如图1,求抛物线的解析式;(2)如图2,点P为第一象限抛物线上一点,连接AP,AP交y轴于点D,设P的横坐标为m,CD的长为d,求d与m的函数解析式(不要求写出自变量m的取值范围);(3)如图3,在(2)的条件
5、下,过点P作PEy轴于点E,延长EP至点G,使得PG3CE,连接CG交AP于点F,且AFC45,连接AG交抛物线于T,求点T的坐标2(2022沈阳模拟)如图1,在平面直角坐标系中抛物线yax2+bx+2与x轴交于A(4,0)和B(1,0),与y轴交于点C,连接AC,BC(1)求该抛物线的解析式;(2)如图2,点M为直线AC上方的抛物线上任意一点,过点M作y轴的平行线,交AC于点N,过点M作x轴的平行线,交直线AC于点Q,求MNQ周长的最大值;(3)点P为抛物线上的一动点,且ACP45BAC,请直接写出满足条件的点P的坐标3(2022沈阳模拟)如图1,在平面直角坐标系中,抛物线yax2+bx+3
6、与x轴交于A,B两点(点B在点A的右边),点A坐标为(1,0),抛物线与y轴交于点C,SABC3(1)求抛物线的函数表达式;(2)点P(x,y)是抛物线上一动点,且x3作PNBC于N,设PNd,求d与x的函数关系式;(3)在(2)的条件下,过点A作PC的平行线交y轴于点F,连接BF,在直线AF上取点E,连接PE,使PE2BF,且PEF+BFE180,请直接写出P点坐标4(2022成都模拟)如图,已知抛物线表达式为yax2ax2a+1(a0),直线yx+与坐标轴交于点A,B(1)若该抛物线过原点,求抛物线的表达式(2)试说明无论a为何值,抛物线一定经过两个定点,并求出这两个定点的坐标点P为两定点
7、所在直线上的动点,当点P到点A的距离和到直线AB的距离之和最小时,求点P的坐标;(3)点N是抛物线上一动点,点M(4,0),且NMA+OBA90,若满足条件的点N的个数恰好为3个,求a的值5(2022成都模拟)如图1所示,直线yx+3与x轴、y轴分别相交于点A,点B,点C(1,2)在经过点A,B的二次函数yax2+bx+c的图象上(1)求抛物线的解析式;(2)点P为线段AB上(不与端点重合)的一动点,过点P作PQy轴交抛物线于点Q,求PQ+PB取得最大值时点P的坐标;(3)如图2,连接BC并延长,交x轴于点D,E为第三象限抛物线上一点,连接DE,点G为x轴上一点,且G(1,0),直线CG与DE
8、交于点F,点H在线段CF上,且CFD+ABH45,连接BH交OA于点M,已知GDFHBO,求点H的坐标6(2022洪山区模拟)如图,在平面直角坐标系中,抛物线与x轴交于点A(1,0),B(3,0),与y轴交于点C(0,3),与直线l:yk(x3)+3(k0)交于D,E两点(1)求抛物线的解析式;(2)如图1,连接BD,若BDE的面积为6,求k的值;(3)如图2,若直线l与抛物线交于M,N两点,与BC交于点P,且MBCNBC求P点的坐标7(2022洪山区模拟)抛物线yax22ax3a与x轴交于A、B两点(点A在点B的左边),与y轴的正半轴交于C点,ABC的面积为6(1)直接写出点A、B的坐标为
9、;抛物线的解析式为 (2)如图1,连结AC,若在第一象限抛物线上存在点D,使点D到直线AC的距离为,求点D的坐标;(3)如图2,平行于AC的直线交抛物线于M、N两点,在抛物线上存在点P,当PQy轴时,PQ恰好平分MPN,求P点坐标8(2022泰安模拟)如图,抛物线ymx2+3mx2m+1的图象经过点C,交x轴于点A(x1,0),B(x2,0)(点A在点B左侧),且x2x15,连接BC,D是AC上方的抛物线一点(1)求抛物线的解析式;(2)连接BC,CD,SDCE:SBCE是否存在最大值?若存在,请求出其最大值及此时点D的坐标;若不存在,请说明理由;(3)第二象限内抛物线上是否存在一点D,DF垂
10、直AC于点F,使得DCF中有一个锐角等于BAC的两倍?若存在,求点D的横坐标,若不存在,请说明理由9(2022青山区模拟)抛物线yx2+(t2)x2t(t0)与x轴交于A、B两点(A在B左边),与y轴交于点 C(1)直接写出A点坐标 、B点坐标 、C点坐标 ;(2)如图1,直线ykx+b与抛物线交于M、N两点(M不与A重合,M在N左边),连接MA,作NHx轴于点H,过点H作HPMA交y轴于点P,PH交MN于点Q,求点Q的横坐标;(3)如图2,直线yd(d0)与抛物线交于第二象限点D,若ADB45,求dt的值10(2022丹阳市二模)如图所示,抛物线yx2+bx+3经过点B(3,0),与x轴交于
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-832427.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
