专题30 半角模型(原卷版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题30 半角模型原卷版 专题 30 半角 模型 原卷版
- 资源描述:
-
1、模块二 常见模型专练 专题30 半角模型 例1 (2022年贵州黔西中考真题)综合与实践(1)如图1,在正方形ABCD中,点M、N分别在AD、CD上,若MBN45,则MN,AM,CN的数量关系为 (2)如图2,在四边形ABCD中,BCAD,ABBC,A+C180,点M、N分别在AD、CD上,若MBNABC,试探索线段MN、AM、CN有怎样的数量关系?请写出猜想,并给予证明(3)如图3,在四边形ABCD中,ABBC,ABC+ADC180,点M、N分别在DA、CD的延长线上,若MBNABC,试探究线段MN、AM、CN的数量关系为 从正方形的一个顶点引出夹角为45的两条射线,并连接它们与该顶点的两对
2、边的交点构成的基本平面几何模型称为半角模型。模型1:正方形中的半角模型模型2:等腰直角三角形中的半角模型结论一半角模型中射线与端点对边交点的连线长等于端点两相邻点到各自最近交点的距离和。即如图中,四边形ABCD是正方形,点E,F分别在BC和CD边上,满足EAF=45,连结EF,则有:EF=BE+DF。结论二两射线的公共端点是射线截端点两对边所得直角三角形的一个旁心,即射线平分截得的直角三角形两锐角的外角。结论三两射线的端点到射线与端点两对边交点的连线的距离等于正方形的边长。结论四过两射线的端点且垂直于射线与端点两对边交点连线的直线分“半角三角形”得的两个三角形与半角三角形外的两个小三角形分别全
3、等。结论五射线截端点两对边所得直角三角形的两直角边相等时,其斜边长取到最小值,其面积取到最大值。【变式1】(2021辽宁沈阳市南昌中学(含:西校区、光荣中学)九年级阶段练习)如图,菱形ABCD与菱形EBGF的顶点B重合,顶点F在射线AC上运动,且,对角线AC、BD相交于点O(1)如图1当点F与点O重合时,直接写出的值为 ;(2)当顶点F运动到如图2的位置时,连接CG,且,试探究CG与DF的数量关系,说明理由,并直接写出直线CG与DF所夹锐角的度数;(3)如图3,取点P为AD的中点,若B、E、P三点共线,且当CF2时,请直接写出BP的长【变式2】(2021河南平顶山九年级期中)(1)阅读理解如图
4、1,在正方形ABCD中,若E,F分别是CD,BC边上的点,EAF45,则我们常常会想到:把ADE绕点A顺时针旋转90,得到ABG易证AEF ,得出线段BF,DE,EF之间的关系为 ;(2)类比探究如图2,在等边ABC中,D,E为BC边上的点,DAE30,BD1,EC2求线段DE的长;(3)拓展应用如图3,在ABC中,ABAC,BAC150,点D,E在BC边上,DAE75,若DE是等腰ADE的腰,请直接写出线段BD的长【变式3】(2021辽宁沈阳一模)(1)思维探究:如图1,点E,F分别在正方形ABCD的边BC,CD上,且EAF45,连接EF,则三条线段EF,BE,DF满足的等量关系式是 ;小明
5、的思路是:将ADF绕点A顺时针方向旋转90至ABG的位置,并说明点G,B,E在同一条直线上,然后证明AEF 即可得证结论;(只需填空,无需证明)(2)思维延伸:如图2,在ABC中,BAC90,ABAC,点D,E均在边BC上,点D在点E的左侧,且DAE45,猜想三条线段BD,DE,EC应满足的等量关系,并说明理由;(3)思维拓广:如图3,在ABC中,BAC60,ABAC5,点D,E均在直线BC上,点D在点E的左侧,且DAE30,当BD1时,请直接写出线段CE的长【变式4】(2021全国九年级专题练习)如图1,在菱形ABCD中,AC2,BD2,AC,BD相交于点O(1)求边AB的长;(2)求BAC
6、的度数;(3)如图2,将一个足够大的直角三角板60角的顶点放在菱形ABCD的顶点A处,绕点A左右旋转,其中三角板60角的两边分别与边BC,CD相交于点E,F,连接EF判断AEF是哪一种特殊三角形,并说明理由21(2020重庆江津八年级期中)(1)如图1,在正方形ABCD中,E是AB上一点,G是AD上一点,ECG=45,求证EG=BE+GD(2)请用(1)的经验和知识完成此题:如图2,在四边形ABCD中,AG/BC(BCAG),B=90,AB=BC=12,E是AB上一点,且ECG=45,BE=4,求EG的长?【变式5】(2020全国九年级专题练习)请阅读下列材料:已知:如图(1)在RtABC中,
7、BAC90,ABAC,点D、E分别为线段BC上两动点,若DAE45探究线段BD、DE、EC三条线段之间的数量关系:(1)猜想BD、DE、EC三条线段之间存在的数量关系式,直接写出你的猜想;(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明;(3)已知:如图(3),等边三角形ABC中,点D、E在边AB上,且DCE30,请你找出一个条件,使线段DE、AD、EB能构成一个等腰三角形,并求出此时等腰三角形顶角的度数【培优练习】1(2022秋山西九年级统考期末)阅读以下材料,并按要求完成相应的任务:从正方形的一个
8、顶点引出夹角为的两条射线,并连接它们与该顶点的两对边的交点构成的基本平面几何模型称为半角模型半角模型可证出多个几何结论,例如:如下图1,在正方形中,以为顶点的,、与、边分别交于、两点易证得大致证明思路:如图2,将绕点顺时针旋转,得到,由可得、三点共线,进而可证明,故任务:如图3,在四边形中,以为顶点的,、与、边分别交于、两点请参照阅读材料中的解题方法,你认为结论是否依然成立,若成立,请写出证明过程;若不成立,请说明理由2(2022秋陕西宝鸡九年级统考阶段练习)已知,如图1,四边形是正方形,分别在边、上,且,我们把这种模型称为“半角模型”,在解决“半角模型”问题时,旋转是一种常用的方法(1)在图
9、1中,连接,为了证明结论“ ”,小亮将绕点顺时针旋转后解答了这个问题,请按小亮的思路写出证明过程;(2)如图2,当绕点旋转到图2位置时,试探究与、之间有怎样的数量关系?3(2022秋江苏扬州八年级校考阶段练习)(1)【阅读理解】如图,已知中,点、是边上两动点,且满足,求证:我们把这种模型称为“半角模型”,在解决“半角模型”问题时,旋转是一种常用的方法小明的解题思路:将半角两边的三角形通过旋转,在一边合并成新的,然后证明与半角形成的全等,再通过全等的性质进行等量代换,得到线段之间的数量关系请你根据小明的思路写出完整的解答过程证明:将绕点旋转至,使与重合,连接,(2)【应用提升】如图,正方形(四边
10、相等,四个角都是直角)的边长为4,点从点出发,以每秒1个单位长度的速度沿射线点运动;点点同时出发,以相同的速度沿射线方向向右运动,当点到达点时,点也停止运动,连接,过点作的垂线交过点平行于的直线于点,与相交于点,连接,设点运动时间为,求的度数; 试探索在运动过程中的周长是否随时间的变化而变化?若变化,说明理由;若不变,试求这个定值4(2021秋广西南宁九年级统考期中)【探索发现】如图,四边形ABCD是正方形,M,N分别在边CD、BC上,且MAN=45,我们把这种模型称为“半角模型”,在解决“半角模型”问题时,旋转是一种常用的方法如,小明将ADM绕点A顺时针旋转90,点D与点B重合,得到ABE,
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
