人教版九年级数学上册第二十三章旋转章节训练试卷(含答案详解版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 九年级 数学 上册 第二十三 旋转 章节 训练 试卷 答案 详解
- 资源描述:
-
1、人教版九年级数学上册第二十三章旋转章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,正三角形ABC的边长为3,将ABC绕它的外心O逆时针旋转60得到ABC,则它们重叠部分的面积是()A2BCD
2、2、如图,将直角三角板绕顶点A顺时针旋转到,点恰好落在的延长线上,则为()ABCD3、如图,在中,D为内一点,分别连接PA、PB、PC,当时,则BC的值为()A1BCD24、如图,在中, 将绕点逆时针旋转得到,其中点与 点是对应点,且点在同一条直线上;则的长为()ABCD5、下列图形中,既是轴对称图形又是中心对称图形的是()ABCD6、如图,已知是等边三角形,边长为,将绕点逆时针旋转后点的对应点的坐标是()ABCD7、小明把一副三角板按如图所示叠放在一起,固定三角板ABC,将另一块三角板DEF绕公共顶点B顺时针旋转(旋转角度不超过180)若两块三角板有一边平行,则三角板DEF旋转的度数可能是(
3、)A15或45B15或45或90C45或90或135D15或45或90或1358、如图,将斜边为4,且一个角为30的直角三角形AOB放在直角坐标系中,两条直角边分别与坐标轴重合,D为斜边的中点,现将三角形AOB绕O点顺时针旋转120得到三角形EOC,则点D对应的点的坐标为()A(1,)B(,1)C(2,2)D(2,2)9、如图,在菱形中,顶点,在坐标轴上,且,分别以点,为圆心,以的长为半径作弧,两弧交于点,连接,将菱形与构成的图形绕点逆时针旋转,每次旋转45,则第2022次旋转结束时,点的坐标为()ABCD10、下列四个图形中,中心对称图形是()ABCD第卷(非选择题 70分)二、填空题(5小
4、题,每小题4分,共计20分)1、如图,在菱形OBCD中,OB1,相邻两内角之比为1:2,将菱形OBCD绕顶点O顺时针旋转90,得到菱形OBCD视为一次旋转,则菱形旋转45次后点C的坐标为_2、如图,已知:,以AB为边作正方形ABCD,使P、D两点落在直线AB的两侧当时,则PD的长为_3、如图,ABC绕点A按逆时针方向旋转50后的图形为AB1C1,则ABB1_4、如图,在平面直角坐标系中,一次函数的图像分别交、轴于点、,将直线绕点按顺时针方向旋转,交轴于点,则直线的函数表达式是_5、如图,将正方形网格放置在平面直角坐标系中,其中,每个小正方形的边长均为1,点A,B,C的坐标分别为,是关于轴的对称
5、图形,将绕点逆时针旋转180,点的对应点为M,则点M的坐标为_三、解答题(5小题,每小题10分,共计50分)1、在RtABC中,BAC90,ABAC,动点D在直线BC上(不与点B,C重合),连接AD,把AD绕点A逆时针旋转90得到AE,连接DE,F,G分别是DE,CD的中点,连接FG【特例感知】(1)如图1,当点D是BC的中点时,FG与BD的数量关系是,FG与直线BC的位置关系是;【猜想论证】(2)当点D在线段BC上且不是BC的中点时,(1)中的结论是否仍然成立?请在图2中补全图形;若成立,请给出证明;若不成立,请说明理由【拓展应用】(3)若ABAC=,其他条件不变,连接BF、CF当ACF是等
6、边三角形时,请直接写出BDF的面积2、如图,已知线段OA在平面直角坐标系中,O是原点(1)将OA绕点O顺时针旋转60得到,过点作轴,垂足为B请在图中用不含刻度的直尺和圆规分别作出、;(2)若,则的面积是_3、图1、图2分别是77的正方形网格,网格中每个小正方形的边长均为1,点A、B在小正方形的顶点上,仅用无刻度直尺完成下列作图(1)在图1中确定点C、D(点C、D在小正方形的顶点上),并画出以AB为对角线的四边形,使其是中心对称图形,但不是轴对称图形,且面积为15;(2)在图2中确定点E、F(点E、F在小正方形的顶点上),并画出以AB为对角线的四边形,使其既是轴对称图形,又是中心对称图形,且面积
7、为154、如图,已知正方形点在边上,以为边在左侧作正方形;以为邻边作平行四边形连接 (1)判断和的数量及位置关系,并说明理由;(2)将绕点顺时针旋转,在旋转过程中,和的数量及位置关系是否发生变化?请说明理由5、如图,点P是正方形ABCD内部的一点,APB90,将RtAPB绕点A逆时针方向旋转90得到ADQ,QD、BP的延长线相交于点E(1)判断四边形APEQ的形状,并说明理由;(2)若正方形ABCD的边长为10,DE2,求BE的长-参考答案-一、单选题1、C【解析】【分析】根据重合部分是正六边形,连接O和正六边形的各个顶点,所得的三角形都是全等的等边三角形,据此即可求解【详解】解:作AMBC于
8、M,如图:重合部分是正六边形,连接O和正六边形的各个顶点,所得的三角形都是全等的等边三角形ABC是等边三角形,AMBC,ABBC3,BMCMBC,BAM30,AMBM,ABC的面积BCAM3,重叠部分的面积ABC的面积;故选:C【考点】本题考查了三角形的外心、等边三角形的性质以及旋转的性质,理解连接O和正六边形的各个顶点,所得的三角形都为全等的等边三角形是关键2、B【解析】【分析】根据直角三角形两锐角互余,求出的度数,由旋转可知,在根据平角的定义求出的度数即可【详解】,由旋转可知,故答案选:B【考点】本题考查直角三角形的性质以及图形的旋转的性质,找出旋转前后的对应角是解答本题的关键3、C【解析
9、】【分析】将BPA顺时针旋转60,到BMN处,得到BPM,ABN是等边三角形,证明C、P、M、N四点共线,且CAN=90,设BC=x,则AB=BN=2x,AC=,利用勾股定理计算即可【详解】将BPA顺时针旋转60,到BMN处,则BPM,ABN是等边三角形,BPM=BMP=60,BAN=60,PM=PB,BA=BN,PA=MN,CPB=BPA=APC=BMN=120,BMP+BMN=180,BPC+BPM =180,C、P、M、N四点共线,CP+PM+MN=CP+PB+PA=,BAC=30,BAN=60,CAN=90,设BC=x,则AB=BN=2x,AC=,解得x=,x= - ,舍去,故选C【考
10、点】本题考查了旋转的性质,等边三角形的判定和性质,勾股定理,直角三角形的性质,熟练掌握旋转的性质是解题的关键4、A【解析】【分析】根据旋转的性质说明ACC是等腰直角三角形,且CAC=90,理由勾股定理求出CC值,最后利用BC=CC-CB即可【详解】解:根据旋转的性质可知AC=AC,ACB=ACB=45,BC=BC=1,ACC是等腰直角三角形,且CAC=90,CC=4,BC=4-1=3故选:A【考点】本题主要考查了旋转的性质、勾股定理,在解决旋转问题时,要借助旋转的性质找到旋转角和旋转后对应的量5、D【解析】【分析】根据轴对称图形与中心对称图形的概念进行判断即可【详解】解:A、是中心对称图形,但
11、不是轴对称图形,不符合题意;B、是轴对称图像,但不是中心对称图形,不符合题意;C、是轴对称图形,但不是中心对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,符合题意;故选:D【考点】本题考查的是中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合,掌握以上知识是解题的关键6、B【解析】【分析】过点作于点过点作轴于点求出点的坐标,再利用全等三角形的性质求解【详解】解:过点作于点,过点作轴于点 是等边三角形,在和中,故选:【考点】本题主要考查了等边三角形的判定与性质,旋转的性质等知识,解题的关键是学会添加
12、常用辅助线,构造直角三角形解决问题7、D【解析】【分析】分四种情况讨论,由平行线的性质和旋转的性质可求解【详解】解:设旋转的度数为,若DEAB,则E=ABE=90,=90-30-45=15,若BEAC,则ABE=180-A=120,=120-30-45=45,若BDAC,则ACB=CBD=90,=90,当点C,点B,点E共线时,ACB=DEB=90,ACDE,=180-45=135,综上三角板DEF旋转的度数可能是15或45或90或135故选:D【考点】本题考查了旋转的性质,平行线的性质,利用分类讨论思想解决问题是本题的关键8、A【解析】【分析】根据题意画出AOB绕着O点顺时针旋转120得到的
13、AOB,连接OD,OD,过D作DMy轴,由旋转的性质得到DOD120,根据ADBDOD2,得到AOD度数,进而求出MOD度数为30,在直角三角形OMD中求出OM与MD的长,即可确定出D的坐标.【详解】解:根据题意画出AOB绕着O点顺时针旋转120得到的AOB,连接OD,OD,过D作DMy轴,DOD120,D为斜边AB的中点,ADODAB2, BAODOA30,MOD30,在RtOMD中,ODOD2,MD1,OM=,则D的对应点D的坐标为(1,),故选:A.【考点】此题考查旋转的性质,直角三角形斜边中线等于斜边的一半的性质,30度角所对的直角边等于斜边的一半的性质,勾股定理,正确掌握旋转的性质得
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
