人教版九年级数学上册第二十二章二次函数同步测评练习题(含答案详解).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 九年级 数学 上册 第二十二 二次 函数 同步 测评 练习题 答案 详解
- 资源描述:
-
1、人教版九年级数学上册第二十二章二次函数同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、为了美观,在加工太阳镜时将下半部分轮廓制作成抛物线的形状(如图所示),对应的两条抛物线关于轴对称, 轴,最低点
2、 在轴上,高 ,则右轮廓所在抛物线的解析式为()ABCD2、下列关于二次函数的说法,正确的是()A对称轴是直线B当时有最小值C顶点坐标是D当时,y随x的增大而减少3、二次函数(,为常数,且中的与的部分对应值如下表:013353下列结论:该抛物线的开口向下;该抛物线的顶点坐标为(1,5);当时,随的增大而减少;3是方程的一个根,其中正确的个数为()A4个B3个C2个D1个4、已知二次函数y=x2x+m1的图象与x轴有交点,则m的取值范围是()Am5Bm2Cm5Dm25、二次函数yax2bxc的图象过点(1,0),对称轴为直线x2,若a0,则下列结论错误的是()A当x2时,y随着x的增大而增大B(
3、ac)2b2C若A(x1,m)、B(x2,m)是抛物线上的两点,当xx1x2时,ycD若方程a(x1)(5x)1的两根为x1、x2,且x1x2,则1x15x26、已知在同一直角坐标系中,二次函数和反比例函数的图象如图所示,则一次函数的图象可能是()ABCD7、已知抛物线的对称轴在轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则的值是()A或2BC2D8、如图,抛物线交轴于点,交轴于点若点坐标为,对称轴为直线,则下列结论错误的是()A二次函数的最大值为BCD9、如图所示,将一根长m的铁丝首尾相接围成矩形,则矩形的面积与其一边满足的函数关系是(
4、)A正比例函数关系B一次函数关系C二次函数关系D反比例函数关系10、如图,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD,设AB边长为x米,BC的长y米,菜园的面积为S(单位:平方米) 当x在一定范围内变化时,y和S都随x的变化而变化,则y与x,S与x满足的函数关系分别是()A一次函数关系,二次函数关系B反比例函数关系,二次函数关系C一次函数关系,反比例函数关系D反比例函数关系,一次函数关系第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度为10米),围成中间隔有一道篱笆的长方形花圃设花圃的宽
5、AB为x米,面积为S平方米则S与x的函数关系式是_,自变量x的取值范围是_2、写出一个满足“当时,随增大而减小”的二次函数解析式_3、如图,在平面直角坐标系中,矩形的顶点O落在坐标原点,点A、点C分别位于x轴,y轴的正半轴,G为线段上一点,将沿翻折,O点恰好落在对角线上的点P处,反比例函数经过点B二次函数的图象经过、G、A三点,则该二次函数的解析式为_(填一般式)4、如果抛物线y(m1)x2有最低点,那么m的取值范围为_5、已知关于的一元二次方程,有下列结论:当时,方程有两个不相等的实根;当时,方程不可能有两个异号的实根;当时,方程的两个实根不可能都小于1;当时,方程的两个实根一个大于3,另一
6、个小于3以上4个结论中,正确的个数为_三、解答题(5小题,每小题10分,共计50分)1、若二次函数图像经过,两点,求、的值.2、抛物线过点,点,顶点为(1)求抛物线的表达式及点的坐标;(2)如图1,点在抛物线上,连接并延长交轴于点,连接,若是以为底的等腰三角形,求点的坐标;(3)如图2,在(2)的条件下,点是线段上(与点,不重合)的动点,连接,作,边交轴于点,设点的横坐标为,求的取值范围3、如图1,抛物线y=ax2+bx+3交x轴于点A(1,0)和点B(3,0)(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上求四边形ACFD的面积;
7、点P是线段AB上的动点(点P不与点A、B重合),过点P作PQx轴交该抛物线于点Q,连接AQ、DQ,当AQD是直角三角形时,求出所有满足条件的点Q的坐标4、如图,已知二次函数的图象经过点.(1)求的值和图象的顶点坐标(2)点在该二次函数图象上.当时,求的值;若到轴的距离小于2,请根据图象直接写出的取值范围.5、已知二次函数()(1)求二次函数图象的对称轴;(2)若该二次函数的图象开口向上,当时,函数图象的最高点为,最低点为,点的纵坐标为,求点和点的坐标;(3)在(2)的条件下,对直线下方二次函数图象上的一点,若,求点的坐标-参考答案-一、单选题1、B【解析】【分析】利用B、D关于y轴对称,CH=
8、1cm,BD=2cm可得到D点坐标为(1,1),由AB=4cm,最低点C在x轴上,则AB关于直线CH对称,可得到左边抛物线的顶点C的坐标为(-3,0),于是得到右边抛物线的顶点C的坐标为(3,0),然后设顶点式利用待定系数法求抛物线的解析式【详解】高CH=1cm,BD=2cm,且B、D关于y轴对称,D点坐标为(1,1),ABx轴,AB=4cm,最低点C在x轴上,AB关于直线CH对称,左边抛物线的顶点C的坐标为(-3,0),右边抛物线的顶点F的坐标为(3,0),设右边抛物线的解析式为y=a(x-3)2,把D(1,1)代入得1=a(1-3)2,解得a=,右边抛物线的解析式为y=(x-3)2,故选:
9、B【考点】本题考查了二次函数的应用:利用实际问题中的数量关系与直角坐标系中线段对应起来,再确定某些点的坐标,然后利用待定系数法确定抛物线的解析式,再利用抛物线的性质解决问题2、B【解析】【分析】根据二次函数的性质对各选项分析判断后利用排除法求解【详解】解:由二次函数可知对称轴是直线,故选项A错误,不符合题意;由二次函数可知开口向上,当时有最小值,故选项B正确,符合题意;由二次函数可知顶点坐标为(3,-5),故选项C错误,不符合题意;由二次函数可知顶点坐标为(3,-5),对称轴是直线,当x3时,y随x的增大而减小,故选项D错误,不符合题意;故选:B【考点】本题考查了二次函数的性质,主要利用了开口
10、方向,顶点坐标,对称轴以及二次函数的增减性3、B【解析】【分析】根据表格数据确定抛物线的对称轴和开口方向,进而求解【详解】解:由表格数据可知,x=0和x=3的函数值都是3,二次函数的对称轴为直线x=(0+3)=1.5,从表格看,对称轴右侧,y随x的增大而减小,故抛物线开口向下,故正确,符合题意;抛物线的对称轴为直线x=1.5,故错误,不符合题意;由知,x1.5时,y随x的增大而减小,故当x2时,y随x的增大而减小,正确,符合题意;方程ax2+(b-1)x+c=0可化为方程ax2+bx+c=x,由表格数据可知,x=3时,y=3,则3是方程ax2+bx+c=x的一个根,从而也是方程ax2+(b-1
11、)x+c=0的一个根,故本选项正确,符合题意;故选:B【考点】本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征4、A【解析】【详解】【分析】由题意可知=(-1) 2-41( m-1)0,解不等式即可求得m的取值范围.【详解】二次函数y=x2x+m1的图象与x轴有交点,=(-1) 2-41( m-1)0,解得:m5,故选A【考点】本题考查了抛物线与x轴的交点,能根据题意得出关于m的不等式是解此题的关键二次函数y=ax2+bx+c(a0)的图象与x轴的交点个数与=b2-4ac的关系,0抛物线y=ax
12、2+bx+c(a0)的图象与x轴有2个交点;=0抛物线y=ax2+bx+c(a0)的图象与x轴有1个交点;0抛物线y=ax2+bx+c(a0)的图象与x轴没有交点.5、D【解析】【分析】根据二次函数的性质即可判断A;根据对称轴得到b4a,经过点(1,0)得到c5a,从而求得a+c4a,即可判断B;由抛物线的对称性得到,结合xx1+x2,即可判断C;利用二次函数与一元二次方程的关系即可判断D【详解】解:二次函数yax2+bx+c中,a0,对称轴为直线x2,当x2时,y随着x的增大而增大,故A正确;2,b4a,二次函数yax2+bx+c的图象过点(1,0),ab+c0,即a+4a+c0,c5a,a
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
二年级道德与法治下册 第一单元 让我试试看评估检测题(B卷pdf) 新人教版.pdf
