分享
分享赚钱 收藏 举报 版权申诉 / 17

类型2022-2023学年度京改版八年级数学上册第十一章实数和二次根式章节训练练习题.docx

  • 上传人:a****
  • 文档编号:639290
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:17
  • 大小:292.91KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 2023 学年度 改版 八年 级数 上册 第十一 实数 二次 根式 章节 训练 练习题
    资源描述:

    1、八年级数学上册第十一章实数和二次根式章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、有下列说法:无理数是无限小数,无限小数是无理数;无理数包括正无理数、和负无理数;带根号的数都是无理数;无理数是含

    2、有根号且被开方数不能被开尽的数;是一个分数其中正确的有()A个B个C个D个2、实数、在数轴上的位置如图所示,化简的结果是( )AB0CD3、若一个正数的两个平方根分别为2a与3a6,则这个正数为()A2B4C6D364、下列计算正确的是()ABCD5、若代数式+|b1|+c2+a在实数范围内有意义,则此代数式的最小值为()A0B5C4D56、下列各式是最简二次根式的是()ABCD7、定义:若,则,x称为以10为底的N的对数,简记为,其满足运算法则:例如:因为,所以,亦即;根据上述定义和运算法则,计算的结果为()A5B2C1D08、已知,a介于两个连续自然数之间,则下列结论正确的是()ABCD9

    3、、定义a*b3ab,abba2,则下列结论正确的有()个3*272(1)5(*)()若a*bb*a,则abA1个B2个C3个D4个10、实数a在数轴上的位置如图所示,则+化简后为()A7B7C2a15D无法确定第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知,则的值是_2、如图,已知数轴上的点A、B、C、D分别表示数、1、2、3,则表示数的点P应落在线段_上(从“”,“”,“”,“”中选择)3、若的整数部分为a,小数部分为b,则代数式的值是_4、若实数,满足,则的值是_5、 _, _三、解答题(5小题,每小题10分,共计50分)1、化简:(1);(2);(3);(4

    4、)2、阅读下列材料解答问题:新定义:对非负数x“四舍五入”到个位的值记为x,即:当n为非负整数时,如果nxn+,则xn;反之,当n为非负整数时,如果xn,则nxn+例如:0.10.490,1.512.482,33,4.55.255,试解决下列问题:(1)+2.4(为圆周率);如果x12,则数x的取值范围为;(2)求出满足xx1的x的取值范围3、计算:4、计算:(1);(2)5、-参考答案-一、单选题1、A【解析】【分析】根据无理数、分数的概念判断【详解】解:无限不循环小数是无理数,错误是有理数,错误是有理数,错误也是无理数,不含根号,错误是一个无理数,不是分数,错误故选:【考点】本题考查实数的

    5、概念,掌握无理数是无限不循环小数是求解本题的关键2、A【解析】【分析】根据实数a和b在数轴上的位置得出其取值范围,再利用二次根式的性质和绝对值的性质即可求出答案【详解】解:由数轴可知-2a-1,1b2,a+10,b-10,a-b0,=-2故选A.【考点】此题主要考查了实数与数轴之间的对应关系,以及二次根式的性质,要求学生正确根据数在数轴上的位置判断数的符号以及绝对值的大小,再根据运算法则进行判断3、D【解析】【分析】根据平方根的定义可得一个关于的一元一次方程,解方程求出的值,再计算有理数的乘方即可得【详解】解:由题意得:,解得,则这个正数为,故选:D【考点】本题考查了平方根、一元一次方程的应用

    6、,熟练掌握平方根的定义是解题关键4、D【解析】【分析】根据二次根式的乘法运算法则对A、D选项进行判断,根据算术平方根的意义对B选项进行判断,根据积的乘方对C选项进行判断【详解】解: ,故A选项错误,D选项正确;,故B选项错误;,故C选项错误故选:D【考点】本题考查二次根式的运算及积的乘方熟练掌握各运算法则是解题关键5、B【解析】【分析】利用二次根式、平方和绝对值的非负性,可知代数式的最小值为,因为二次根式有意义,因此5,即可求解.【详解】代数式,|b1|c2a在实数范围内有意义,则a50,|b1|0,c20,所以代数式,|b1|c2a的最小值是,5,故选:B【考点】二次根式、绝对值、偶次方(平

    7、方考查最多)都具有非负性,二次根式有意义的条件是被开方数0.6、A【解析】【分析】根据最简二次根式的定义即可求出答案【详解】解:A、是最简二次根式,故选项正确;B、=,不是最简二次根式,故选项错误;C、,不是最简二次根式,故选项错误;D、,不是最简二次根式,故选项错误;故选:A【考点】本题考查最简二次根式,解题的关键是正确理解最简二次根式的定义,本题属于基础题型7、C【解析】【分析】根据新运算的定义和法则进行计算即可得【详解】解:原式,故选:C【考点】本题考查了新定义下的实数运算,掌握理解新运算的定义和法则是解题关键8、C【解析】【分析】先估算出的范围,即可得出答案【详解】解:,在3和4之间,

    8、即故选:C【考点】本题考查了估算无理数的大小能估算出的范围是解题的关键9、C【解析】【分析】先按照定义书写出正确的式子再进行计算就可解决本题【详解】、,故计算正确,符合题意; 、,故计算正确,符合题意;、,故计算错误,不符合题意; 、,a*bb*a,解得:, 故计算正确,符合题意综上所述,正确的有:,共3个故选:C【考点】本题考查了按照定义运算的知识,严格按照定义书写出正确的式子,准确的计算是解决本题的关键10、A【解析】【详解】根据二次根式的性质可得:+,因为,所以原式=,故选A.二、填空题1、【解析】【分析】由条件,先求出的值,再根据平方根的定义即可求出的值【详解】解:,故答案为:【考点】

    9、本题主要考查了完全平方公式的变形求值以及平方根,熟悉完全平方公式的结构特点及平方根的定义是解题的关键2、【解析】【分析】用有理数逼近无理数,求无理数的近似值【详解】解:,故表示数的点P应落在线段上故答案为:【考点】此题主要考查了估算无理数的大小估算及应用,正确掌握估算及应用是解此题关键3、2【解析】【分析】先由得到,进而得出a和b,代入求解即可【详解】解: , 的整数部分为a,小数部分为b,故答案为:2【考点】本题主要考查无理数及代数式化简求值,解决本题的关键是要熟练掌握无理数估算方法和无理数整数和小数部分的求解方法4、3【解析】【分析】根据二次根式有意义的条件得出x-50且5-x0,求出x=

    10、5,再求出y,最后代入求出即可【详解】解:要使有意义,必须x-50且5-x0,解得:x=5,把x=5代入得:y=4,所以,故答案为:3【考点】本题考查了二次根式有意义的条件和解不等式,能根据二次根式有意义的条件得出x-50和5-x0是解此题的关键5、 , 3【解析】【分析】根据求立方根和二次根式的乘方运算法则分别计算即可得到结果【详解】解:;,故答案为:-3;3【考点】此题主要考查了实数的运算,熟练掌握运算法则是解答此题的关键三、解答题1、(1)27;(2);(3);(4)【解析】【分析】根据积与商的算术平方根的性质将原式化为最简二次根式即可【详解】解:(1);(2);(3);(4)【考点】本

    11、题主要考查了最简二次根式,熟知定义以及二次根式的性质是解题的关键2、(1)6,2.5x3.5;(2)x,4,【解析】【分析】(1)利用对非负实数x“四舍五入”到个位的值记为x,进而得出+2.4的值;利用对非负实数x“四舍五入”到个位的值记为x,进而得出x的取值范围;(2)利用xx1,设xk,k为整数,得出关于k的不等关系求出即可【详解】(1)由题意可得:+2.46;故答案为:6,x12,1.5x12.5,2.5x3.5;故答案为:2.5x3.5;(2)x0,x1为整数,设xk,k为整数,则xk,kk1,k1kk1+,k0,k,k3,4,5,6,7,则x,4,【考点】此题主要考查了新定义以及一元

    12、一次不等式组的应用,根据题意正确理解x的意义是解题关键3、【解析】【分析】直接化简二次根式,进而合并即可;【详解】=【考点】此题考查二次根式的混合运算,正确化简二次根式是解题关键4、 (1)(2)【解析】【分析】(1)先把二次根式化为最简二次根式,然后合并同类项;(2)利用平方差和完全平方公式计算(1)原式(2)原式【考点】本题考察了二次根式的混合运算和乘法公式先把二次根式化为最近二次根式,然后再合并同类项,平方差公式,完全平方公式,正确化简二次根式和使用乘法公式是解题的关键5、6【解析】【分析】根据二次根式的乘方运算、绝对值的性质、零指数幂、负整数指数幂化简,再根据实数的混合运算法则计算即可【详解】解:【考点】本题考查了含二次根式的乘方,绝对值,零指数幂,负整数指数幂的实数混合运算;掌握好相关的基础知识是关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年度京改版八年级数学上册第十一章实数和二次根式章节训练练习题.docx
    链接地址:https://www.ketangku.com/wenku/file-639290.html
    相关资源 更多
  • 专题6.22 相似三角形的性质(巩固篇)(专项练习)-2022-2023学年九年级数学下册基础知识专项讲练(苏科版).docx专题6.22 相似三角形的性质(巩固篇)(专项练习)-2022-2023学年九年级数学下册基础知识专项讲练(苏科版).docx
  • 专题6.22 反比例函数(折叠问题)(培优篇)(专项练习)-2022-2023学年八年级数学下册基础知识专项讲练(浙教版).docx专题6.22 反比例函数(折叠问题)(培优篇)(专项练习)-2022-2023学年八年级数学下册基础知识专项讲练(浙教版).docx
  • 专题6.22 一次函数与二元一次方程(知识梳理与考点分类讲解)-2023-2024学年八年级数学上册基础知识专项突破讲与练(苏科版).docx专题6.22 一次函数与二元一次方程(知识梳理与考点分类讲解)-2023-2024学年八年级数学上册基础知识专项突破讲与练(苏科版).docx
  • 专题6.22 《反比例函数》全章复习与巩固(巩固篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(北师大版).docx专题6.22 《反比例函数》全章复习与巩固(巩固篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(北师大版).docx
  • 专题6.21 相似三角形的性质(基础篇)(专项练习)-2022-2023学年九年级数学下册基础知识专项讲练(苏科版).docx专题6.21 相似三角形的性质(基础篇)(专项练习)-2022-2023学年九年级数学下册基础知识专项讲练(苏科版).docx
  • 专题6.21 反比例函数(折叠问题)(综合篇)(专项练习)-2022-2023学年八年级数学下册基础知识专项讲练(浙教版).docx专题6.21 反比例函数(折叠问题)(综合篇)(专项练习)-2022-2023学年八年级数学下册基础知识专项讲练(浙教版).docx
  • 专题6.21 《反比例函数》全章复习与巩固(基础篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(北师大版).docx专题6.21 《反比例函数》全章复习与巩固(基础篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(北师大版).docx
  • 专题6.20 相似三角形的性质(知识讲解)-2022-2023学年九年级数学下册基础知识专项讲练(苏科版).docx专题6.20 相似三角形的性质(知识讲解)-2022-2023学年九年级数学下册基础知识专项讲练(苏科版).docx
  • 专题6.20 反比例函数和一次函数综合(培优篇)(专项练习)-2022-2023学年八年级数学下册基础知识专项讲练(浙教版).docx专题6.20 反比例函数和一次函数综合(培优篇)(专项练习)-2022-2023学年八年级数学下册基础知识专项讲练(浙教版).docx
  • 专题6.20 《反比例函数》全章复习与巩固(知识讲解)-2022-2023学年九年级数学上册基础知识专项讲练(北师大版).docx专题6.20 《反比例函数》全章复习与巩固(知识讲解)-2022-2023学年九年级数学上册基础知识专项讲练(北师大版).docx
  • 专题6.2 期末押题卷(沪科版)(原卷版).docx专题6.2 期末押题卷(沪科版)(原卷版).docx
  • 专题6.2 普查和抽样调查(培优分阶练)(解析版).docx专题6.2 普查和抽样调查(培优分阶练)(解析版).docx
  • 专题6.2 数量积及最值(范围)问题(原卷版).docx专题6.2 数量积及最值(范围)问题(原卷版).docx
  • 专题6.2 数据的收集与整理(全章分层练习)(基础练)-2023-2024学年七年级数学上册基础知识专项突破讲与练(北师大版).docx专题6.2 数据的收集与整理(全章分层练习)(基础练)-2023-2024学年七年级数学上册基础知识专项突破讲与练(北师大版).docx
  • 专题6.2 图形的相似(全章分层练习)(基础练)-2023-2024学年九年级数学下册全章复习与专题突破讲与练(苏科版).docx专题6.2 图形的相似(全章分层练习)(基础练)-2023-2024学年九年级数学下册全章复习与专题突破讲与练(苏科版).docx
  • 专题6.2 反比例函数(基础篇)(专项练习)-2022-2023学年八年级数学下册基础知识专项讲练(浙教版).docx专题6.2 反比例函数(基础篇)(专项练习)-2022-2023学年八年级数学下册基础知识专项讲练(浙教版).docx
  • 专题6.2 反比例函数的实际应用(知识解读)-2022-2023学年九年级数学上册《同步考点解读•专题训练》(北师大版).docx专题6.2 反比例函数的实际应用(知识解读)-2022-2023学年九年级数学上册《同步考点解读•专题训练》(北师大版).docx
  • 专题6.2 反比例函数的实际应用(专项训练)(解析版).docx专题6.2 反比例函数的实际应用(专项训练)(解析版).docx
  • 专题6.2等差数列(原卷版).docx专题6.2等差数列(原卷版).docx
  • 专题6.2等差数列(解析版).docx专题6.2等差数列(解析版).docx
  • 专题6.1小题易丢分期末考前必做选择30题(提升版) 【苏科版】(解析版).docx专题6.1小题易丢分期末考前必做选择30题(提升版) 【苏科版】(解析版).docx
  • 专题6.1反比例函数新版初中北师大版数学9年级上册同步培优专题题库(教师版) .docx专题6.1反比例函数新版初中北师大版数学9年级上册同步培优专题题库(教师版) .docx
  • 专题6.19 反比例函数中的几何模型(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(北师大版).docx专题6.19 反比例函数中的几何模型(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(北师大版).docx
  • 专题6.18 探索三角形相似的条件(培优篇)(专项练习)-2022-2023学年九年级数学下册基础知识专项讲练(苏科版).docx专题6.18 探索三角形相似的条件(培优篇)(专项练习)-2022-2023学年九年级数学下册基础知识专项讲练(苏科版).docx
  • 专题6.18 反比例函数解题方法-设参求值(巩固篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(北师大版).docx专题6.18 反比例函数解题方法-设参求值(巩固篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(北师大版).docx
  • 专题6.18 反比例函数和一次函数综合(基础篇)(专项练习)-2022-2023学年八年级数学下册基础知识专项讲练(浙教版).docx专题6.18 反比例函数和一次函数综合(基础篇)(专项练习)-2022-2023学年八年级数学下册基础知识专项讲练(浙教版).docx
  • 专题6.17 探索三角形相似的条件(巩固篇)(专项练习)-2022-2023学年九年级数学下册基础知识专项讲练(苏科版).docx专题6.17 探索三角形相似的条件(巩固篇)(专项练习)-2022-2023学年九年级数学下册基础知识专项讲练(苏科版).docx
  • 专题6.17 一次函数的图象(直通中考)(培优练)-2023-2024学年八年级数学上册基础知识专项突破讲与练(苏科版).docx专题6.17 一次函数的图象(直通中考)(培优练)-2023-2024学年八年级数学上册基础知识专项突破讲与练(苏科版).docx
  • 专题6.16 探索三角形相似的条件(基础篇)(专项练习)-2022-2023学年九年级数学下册基础知识专项讲练(苏科版).docx专题6.16 探索三角形相似的条件(基础篇)(专项练习)-2022-2023学年九年级数学下册基础知识专项讲练(苏科版).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1