人教版九年级数学上册第二十二章二次函数章节练习试题(含答案解析版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 九年级 数学 上册 第二十二 二次 函数 章节 练习 试题 答案 解析
- 资源描述:
-
1、人教版九年级数学上册第二十二章二次函数章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若二次函数y=ax2+bx+c的x与y的部分对应值如下表:则下列说法错误的是()x-10123yA二次函数图像
2、与x轴交点有两个Bx2时y随x的增大而增大C二次函数图像与x轴交点横坐标一个在10之间,另一个在23之间D对称轴为直线x=1.52、若关于x的二次函数yax2+bx的图象经过定点(1,1),且当x1时y随x的增大而减小,则a的取值范围是()ABCD3、三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为()A4米B5米C2米D7米4、已知二次函数y = ax2 + bx + c(a0)的图象如图所示,则下列结论:4a
3、+ 2b + c 0;y随x的增大而增大;方程ax2 + bx + c = 0两根之和小于零;一次函数y = ax + bc的图象一定不过第二象限,其中正确的个数是()A4个B3个C2个D1个5、二次函数y=x2+px+q,当0x1时,此函数最大值与最小值的差()A与p、q的值都有关B与p无关,但与q有关C与p、q的值都无关D与p有关,但与q无关6、在同一直角坐标系中,一次函数ykx+1与二次函数yx2+k的大致图象可以是()ABCD7、北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉锁与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函
4、数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点,拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为()ABCD8、已知抛物线的对称轴在轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则的值是()A或2BC2D9、将抛物线C1:y(x3)22向左平移3个单位长度,得到抛物线C2,抛物线C2与抛物线C3关于x轴对称,则抛物线C3的解析式为()Ayx22Byx22Cyx22Dyx2210、已知函数ykx2
5、7x7的图象和x轴有交点,则k的取值范围是()ABC且k0D且k0第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、二次函数y=ax2+bx+c(a0)图象上部分点的坐标(x,y)对应值列表如下:x-3-2-101y-4-3-4-7-12则该图象的对称轴是_2、若函数的图像与坐标轴有三个交点,则c的取值范围是_3、对于任意实数,抛物线与轴都有公共点则的取值范围是_4、如图是某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于,两点,拱桥最高点到的距离为,为拱桥底部的两点,且,若的长为,则点到直线的距离为_5、飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)
6、的函数解析式是y=60t在飞机着陆滑行中,最后4s滑行的距离是_m三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系中,函数的图象记为,函数的图象记为,其中为常数,且,图象,合起来得到的图象记为(1)若图象有最低点,且最低点到轴距离为3,求的值;(2)若时,点在图象上,且,求的取值范围;(3)若点、的坐标分别为,连结当线段与图象恰有三个公共点时,请直接写出的取值范围2、某工厂生产并销售A,B两种型号车床共14台,生产并销售1台A型车床可以获利10万元;如果生产并销售不超过4台B型车床,则每台B型车床可以获利17万元,如果超出4台B型车床,则每超出1台,每台B型车床获利将均减少1
7、万元设生产并销售B型车床台(1)当时,完成以下两个问题:请补全下面的表格:A型B型车床数量/台_每台车床获利/万元10_若生产并销售B型车床比生产并销售A型车床获得的利润多70万元,问:生产并销售B型车床多少台?(2)当014时,设生产并销售A,B两种型号车床获得的总利润为W万元,如何分配生产并销售A,B两种车床的数量,使获得的总利润W最大?并求出最大利润3、某品牌汽车销售店销售某种品牌的汽车,每辆汽车的进价16(万元)当每辆售价为22(万元)时,每月可销售4辆汽车根据市场行情,现在决定进行降价销售通过市场调查得到了每辆降价的费用(万元)与月销售量(辆)()满足某种函数关系的五组对应数据如下表
8、:4567800.511.52(1)请你根据所给材料和初中所学的函数知识写出与的关系式_;(2)每辆原售价为22万元,不考虑其它成本,降价后每月销售利润y=(每辆原售价-进价)x,请你根据上述条件,求出月销售量为多少时,销售利润最大?最大利润是多少?4、已知,如图,在RtABC中,C90,A60,AB12cm,点P从点A沿AB以每秒2cm的速度向点B运动,点Q从点C以每秒1cm的速度向点A运动,设点P、Q分别从点A、C同时出发,运动时间为t(秒)(0t6),回答下列问题:(1)直接写出线段AP、AQ的长(含t的代数式表示):AP_,AQ_;(2)设APQ 的面积为S,写出S与t的函数关系式;(
9、3)如图,连接PC,并把PQC沿QC翻折,得到四边形,那么是否存在某一时间t,使四边形为菱形?若存在,求出此时t的值;若不存在,说明理由5、已知关于x的一元二次方程x2+xm=0(1)设方程的两根分别是x1,x2,若满足x1+x2=x1x2,求m的值(2)二次函数y=x2+xm的部分图象如图所示,求m的值-参考答案-一、单选题1、D【解析】【分析】根据x=1时的函数值最小判断出抛物线的开口方向; 根据函数的对称性可知当x=2时的函数值与x=0时的函数值相同, 并求出对称轴直线方程可得答案.【详解】A、由图表数据可知x=1时, y的值最小, 所以抛物线开口向上. 所以该抛物线与x轴有两个交点.故
10、本选项正确;B、根据图表知, 当x2时y随x的增大而增大.故本选项正确;C、抛物线的开口方向向上, 抛物线与y轴的交点坐标是(0,),对称轴是x=1,所以二次函数图象与x轴交点横坐标一个在-10之间, 另一个在23之间. 故本选项正确;D、因为x=0和x=2 时的函数值相等,则抛物线的对称轴为直线x=1. 故本选项错误;故选:D.【考点】本题主要考查二次函数性质与二次函数的最值.2、D【解析】【分析】根据题意开口向上,且对称轴1,ab1,即可得到1,从而求解【详解】由二次函数yax2+bx可知抛物线过原点,抛物线定点(1,1),且当x-1时,y随x的增大而减小,抛物线开口向上,且对称轴1,ab
11、1,a0,b1a,1,故选:D【考点】本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,根据题意得关于a的不等式组是解题的关键3、B【解析】【分析】根据题意,可以画出相应的抛物线,然后即可得到大孔所在抛物线解析式,再求出顶点为A的小孔所在抛物线的解析式,将x=10代入可求解【详解】解:如图,建立如图所示的平面直角坐标系,由题意可得MN=4,EF=14,BC=10,DO=,设大孔所在抛物线解析式为y=ax2+,BC=10,点B(5,0),0=a(5)2+,a=-,大孔所在抛物线解析式为y=-x2+,设点A(b,0),则设顶点为A的小孔所在抛物线的解析式为y=m(xb)2,EF=14
12、,点E的横坐标为-7,点E坐标为(-7,-),-=m(xb)2,x1=+b,x2=-+b,MN=4,|+b-(-+b)|=4m=-,顶点为A的小孔所在抛物线的解析式为y=-(xb)2,大孔水面宽度为20米,当x=-10时,y=-,-=-(xb)2,x1=+b,x2=-+b,单个小孔的水面宽度=|(+b)-(-+b)|=5(米),故选:B【考点】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答4、D【解析】【分析】根据函数的图象可知x=2时,函数值的正负性;并且可知与x轴有两个交点,即对应方程有两个实数根;函数的增减性需要找到其对称轴才知具体情况;由函数的
13、图象还可知b、c的正负性,一次函数y=ax+bc所经过的象限进而可知正确选项【详解】当x=2时,y=4a+2b+c,对应的y值为正,即4a+2b+c0,故正确;因为抛物线开口向上,在对称轴左侧,y随x的增大而减小;在对称轴右侧,y随x的增大而增大,故错误;由二次函数y=ax2+bx+c(a0)的图象可知:函数图象与x轴有两个不同的交点,即对应方程有两个不相等的实数根,且正根的绝对值较大,方程ax2+bx+c=0两根之和大于零,故错误;由图象开口向上,知a0,与y轴交于负半轴,知c0,由对称轴,知b0,bc0,一次函数y=ax+bc的图象一定经过第二象限,故错误;综上,正确的个数为1个,故选:D
14、【考点】本题考查了二次函数的图象与系数的关系以及一次函数的图象,利用了数形结合的思想,此类题涉及的知识面比较广,能正确观察图象是解本题的关键5、D【解析】【分析】分别求出函数解析式的最小值、当0x1时端点值即:当x=0和x=1时的函数值由二次函数性质可知此函数最大值与最小值必是其中的两个,通过比较可知差值与p有关,但与q无关【详解】解:依题意得:当时,端点值,当时,端点值,当时,函数最小值,由二次函数的最值性质可知,当0x1时,此函数最大值和最小值是、其中的两个,所以最大值与最小值的差可能是或 或,故其差只含p不含q,故与p有关,但与q无关故选:【考点】本题考查了二次函数的最值问题,掌握二次函
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
三年级下语文课件-聪明的徐文长_鄂教版.ppt
