分享
分享赚钱 收藏 举报 版权申诉 / 28

类型基础强化人教版九年级数学上册第二十二章二次函数同步训练试题(解析版).docx

  • 上传人:a****
  • 文档编号:958325
  • 上传时间:2025-12-19
  • 格式:DOCX
  • 页数:28
  • 大小:655.43KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    基础 强化 人教版 九年级 数学 上册 第二十二 二次 函数 同步 训练 试题 解析
    资源描述:

    1、人教版九年级数学上册第二十二章二次函数同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、抛物线y=(x2)21可以由抛物线y=x2平移而得到,下列平移正确的是()A先向左平移2个单位长度,然后向上平

    2、移1个单位长度B先向左平移2个单位长度,然后向下平移1个单位长度C先向右平移2个单位长度,然后向上平移1个单位长度D先向右平移2个单位长度,然后向下平移1个单位长度2、已知学校航模组设计制作的火箭升空高度h(m)与飞行时间t(s)满足函数表达式ht224t1,则下列说法中正确的是()A点火后1s和点火后3s的升空高度相同B点火后24s火箭落于地面C火箭升空的最大高度为145mD点火后10s的升空高度为139m3、二次函数的图象如图所示,则下列结论中不正确的是( )AB函数的最大值为C当时,D4、在同一平面直角坐标系内,二次函数与一次函数的图象可能是()ABCD5、如图,在平面直角坐标系中,抛物

    3、线yax2+bx+c(a0)与x轴交于点A(1,0),顶点坐标为(1,m),与y轴的交点在(0,4),(0,3)之间(包含端点),下列结论:abc0;4ac-b20;ac0;1a;关于x的方程ax2+bx+c+2m0没有实数根其中正确的结论有()A1个B2个C3个D4个6、二次函数yx2+bx的对称轴为直线x2,若关于x的一元二次方程x2+bxt0(t为实数)在1x6的范围内有解,则t的取值范围是()A5t12B4t5C4t5D4t127、在同一直角坐标系中,一次函数ykx+1与二次函数yx2+k的大致图象可以是()ABCD8、已知二次函数的图象上有两点A(x1,2023)和B(x2,2023

    4、),则当时,二次函数的值是()A2020B2021C2022D20239、北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉锁与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点,拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为()ABCD10、使用家用燃气灶烧开同一壶水所需的燃气量(单位:)与旋钮的旋转角度(单位:度)()近似满足函数关系y=ax2

    5、+bx+c(a0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度与燃气量的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图为二次函数的图象,根据图象可以得到方程的一个根在_与_之间,另一个根在_与_之间2、已知二次函数y=x24x+k的图象的顶点在x轴下方,则实数k的取值范围是_3、如图,点O是正方形ABCD的对称中心,射线OM,ON分别交正方形的边AD,CD于E,F两点,连接EF,已知,(1)以点E,O,F,D为顶点的图形的面积为_;(2)线段EF的最小值是_4、若正

    6、方体的棱长为,表面积为,则与的关系式为_5、如图,二次函数的图像过点(-1,0),对称轴为直线x=2,下列结论:4a+b=0;9a+c0;若点A(-3,)、点B()、点C()在该函数图像上,则:若方程的两根为,且,则其中正确的结论有_ (只填序号)三、解答题(5小题,每小题10分,共计50分)1、受“新冠”疫情的影响,某销售商在网上销售A、B两种型号的“手写板”,获利颇丰已知A型,B型手写板进价、售价和每日销量如表格所示:进价(元/个)售价(元/个)销量(个/日)A型600900200B型8001200400根据市场行情,该销售商对A手写板降价销售,同时对B手写板提高售价,此时发现A手写板每降

    7、低5就可多卖1,B手写板每提高5就少卖1,要保持每天销售总量不变,设其中A手写板每天多销售x,每天总获利的利润为y(1)求y、x间的函数关系式并写出x取值范围;(2)要使每天的利润不低于234000元,直接写出x的取值范围;(3)该销售商决定每销售一个B手写板,就捐a元给因“新冠疫情”影响的困难家庭,当时,每天的最大利润为229200元,求a的值2、如图,抛物线交x轴于,两点,交y轴于点,点Q为线段BC上的动点(1)求抛物线的解析式;(2)求的最小值;(3)过点Q作交抛物线的第四象限部分于点P,连接PA,PB,记与的面积分别为,设,求点P坐标,使得S最大,并求此最大值3、渠县是全国优质黄花主产

    8、地,某加工厂加工黄花的成本为30元/千克,根据市场调查发现,批发价定为48元/千克时,每天可销售500千克为增大市场占有率,在保证盈利的情况下,工厂采取降价措施批发价每千克降低1元,每天销量可增加50千克(1)写出工厂每天的利润元与降价元之间的函数关系当降价2元时,工厂每天的利润为多少元?(2)当降价多少元时,工厂每天的利润最大,最大为多少元?(3)若工厂每天的利润要达到9750元,并让利于民,则定价应为多少元?4、某商场经营某种品牌的玩具,购进的单价是30元,根据市场调查,在一段时间内,销售单价是40元时,销售量是600元,而销售单价每涨1元,就会少售出10件玩具(1)设该种品牌玩具的销售单

    9、价为x元,请你分别用x的代数式来表示销售量y件和销售该品牌玩具获利利润W元;(2)在(1)的条件下,若商场获利了10000元销售利润,求该玩具销售单价x应定为多少元?(3)在(1)的条件下,若玩具厂规定该品牌玩具销售单价不低于45元,且商场要完成不少于480件的销售任务,求商场销售该品牌玩具获利的最大利润是多少元?5、如图,已知二次函数的图象经过A(2,0)、B(0,-6)两点(1)求这个二次函数的解析式;(2)求这个二次函数的对称轴、顶点坐标;(3)设该二次函数的对称轴与x轴交于点C,连结BA、BC,求ABC的面积-参考答案-一、单选题1、D【解析】【详解】分析:抛物线平移问题可以以平移前后

    10、两个解析式的顶点坐标为基准研究详解:抛物线y=x2顶点为(0,0),抛物线y=(x2)21的顶点为(2,1),则抛物线y=x2向右平移2个单位,向下平移1个单位得到抛物线y=(x2)21的图象故选D点睛:本题考查二次函数图象平移问题,解答时最简单方法是确定平移前后的抛物线顶点,从而确定平移方向2、C【解析】【分析】分别求出t=1、3、24、10时h的值可判断A、B、D三个选项,将解析式配方成顶点式可判断C选项【详解】解:A、当t=1时,h=24;当t=3时,h=64;所以点火后1s和点火后3s的升空高度不相同,此选项错误;B、当t=24时,h=10,所以点火后24s火箭离地面的高度为1m,此选

    11、项错误;C、由ht224t1=(t-12)2+145知火箭升空的最大高度为145m,此选项正确;D、当t=10时,h=141m,此选项错误;故选:C【考点】本题主要考查二次函数的应用,解题的关键是熟练掌握二次函数的性质3、D【解析】【分析】根据抛物线开口方向、抛物线的对称轴位置和抛物线与y轴的交点位置可判断a、b、c的符号,利用抛物线的对称性可得到抛物线与x轴的另一个交点坐标为(-3,0),从而分别判断各选项【详解】解:抛物线开口向下,a0,抛物线的对称轴为直线x=-1,即b=2a,则b0,抛物线与y轴交于正半轴,c0,则abc0,故A正确;当x=-1时,y取最大值为,故B正确;由于开口向下,

    12、对称轴为直线x=-1,则点(1,0)关于直线x=-1对称的点为(-3,0),即抛物线与x轴交于(1,0),(-3,0),当时,故C正确;由图像可知:当x=-2时,y0,即,故D错误;故选D【考点】本题考查了二次函数与系数的关系:对于二次函数y=ax2+bx+c(a0),二次项系数a决定抛物线的开口方向和大小:当a0时,抛物线向上开口;抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab0),对称轴在y轴左; 当a与b异号时(即ab0),对称轴在y轴右常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c)4、C【解析】【分析】根据一次函数和二次函数的图象和性质

    13、,分别判断a,b的符号,利用排除法即可解答【详解】解:A、由一次函数图象可知,a0,b0,由二次函数图象可知,a0,b0,不符合题意;B、由一次函数图象可知,a0,b0,由二次函数图象可知,a0,b0,不符合题意;C、由一次函数图象可知,a0,b0,由二次函数图象可知,a0,b0,符合题意;D、由一次函数图象可知,a0,b=0,由二次函数图象可知,a0,b0,不符合题意;故选:C【考点】本题考查二次函数的图象和一次函数的图象,解题的关键是明确一次函数和二次函数的性质5、C【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情

    14、况进行推理,进而对所得结论进行判断【详解】解:抛物线yax2+bx+c(a0)的图象开口向上,a0抛物线yax2+bx+c(a0)的对称轴在y轴的右侧, 又抛物线yax2+bx+c(a0)的图象交y轴的负半轴, ,故正确,符合题意;抛物线yax2+bx+c(a0)的图象与x轴有两个交点,即,故错误,不符合题意;抛物线的顶点坐标为(1,m),与x轴的一个交点为A(-1,0)对称轴为x=1抛物线与x轴的另一个交点为(3,0)当x=3时,y=,ac =0,故错误,不符合题意;当x=-1时,y=a-b+c=0,则c=-a+b, 由-4c-3,得-4-a+b-3,图象的对称轴为x=1,故b=-2a,得-

    15、4-3a-3,故1a正确,符合题意;y=ax2+bx+c的顶点为(1,m),即当x=1时y有最小值m而y=m-2和y=ax2+bx+c无交点,即方程ax2+bx+c=m-2无解,关于x的方程ax2+bx+c+2-m=0没有实数根,故正确,符合题意故选:C【考点】本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征6、D【解析】【分析】根据对称轴方程可得b=-4,可得二次函数解析式,可得顶点坐标为(2,-4),关于x的一元二次方程x2+bxt0的解为二次函数yx24x与直线yt的交点的横坐标,当1x6

    16、时,4t12,进而求解;【详解】对称轴为直线x2,b4,二次函数解析式为yx24x,顶点坐标为(2,-4),1x6,当x=-1时,y=5,当x=6时,y=12,二次函数y的取值范围为4t12,关于x的一元二次方程x2+bxt0的解为yx24x与直线yt的交点的横坐标,4t12,故选:D【考点】本题考查二次函数图象的性质,一元二次方程的解;将一元二次方程的解转换为二次函数与直线交点问题,数形结合的解决问题是解题的关键7、A【解析】【分析】二次函数图象与y轴交点的位置可确定k的正负,再利用一次函数图象与系数的关系可找出一次函数y=-kx+1经过的象限,对比后即可得出结论【详解】解:由yx2+k可知

    17、抛物线的开口向上,故B不合题意;二次函数yx2+k与y轴交于负半轴,则k0,k0,一次函数ykx+1的图象经过经过第一、二、三象限,A选项符合题意,C、D不符合题意;故选:A【考点】本题考查了二次函数的图象、一次函数图象以及一次函数图象与系数的关系,根据二次函数的图象找出每个选项中k的正负是解题的关键8、C【解析】【分析】根据A、B两点纵坐标一样,且都在函数图像上,得出x1、x2是方程2020x2+2021x+2022=2023的两个根,由韦达定理得到,代入解析式即可得解【详解】解:二次函数的图象上有两点A(,2023)和B(,2023),、是方程的两个根,当时,有:,故选C【考点】本题考查了

    18、二次函数与一元二次方程的关系、韦达定理;关键在于能发现题干所给条件的特点,会运用韦达定理9、B【解析】【分析】设抛物线解析式为y=ax2,由已知可得点B坐标为(45,-78),利用待定系数法进行求解即可.【详解】拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为轴建立平面直角坐标系,设抛物线解析式为y=ax2,点B(45,-78),-78=452a,解得:a=,此抛物线钢拱的函数表达式为,故选B.【考点】本题考查了二次函数的应用,熟练掌握待定系数法是解本题的关键.10、C【解析】【分析】根据已知三点和近似满足函数关系y=a

    19、x2+bx+c(a0)可以大致画出函数图象,并判断对称轴位置在36和54之间即可选择答案.【详解】解:由图表数据描点连线,补全图象可得如图,抛物线对称轴在36和54之间,约为41,旋钮的旋转角度在36和54之间,约为41时,燃气灶烧开一壶水最节省燃气,故选C,【考点】本题考查了二次函数的应用,二次函数的图象性质,熟练掌握二次函数图象的对称性质,判断对称轴位置是解题关键,综合性较强,需要有较高的思维能力,用图象法解题是本题考查的重点二、填空题1、 -1 0 2 3【解析】【分析】观察图象可得:二次函数y=ax2+bx+c的图象与x轴的交点有两个,一个在-1与0之间,另一个在2与3之间;然后由二次

    20、函数与一元二次方程的关系,即可求得答案【详解】二次函数的图象与x轴的交点有两个,一个在1与0之间,另一个在2与3之间;方程的一个根在1与0之间,另一个根在2与3之间.故答案为1,0,2,3.【考点】此题考查了图象法求一元二次方程的近似根的知识.此题难度不大,注意掌握数形结合思想的应用.2、k4【解析】【分析】由题意可知抛物线与x轴有两个交点,因此运用二次函数的图象与x轴交点的性质解答即可【详解】二次函数y=x24x+k中a=10,图象的开口向上,又二次函数y=x24x+k的图象的顶点在x轴下方,抛物线y=x24x+k的图象与x轴有两个交点,0,即(-4)2-4k0,k4,故答案为k4.【考点】

    21、本题考查了抛物线与x轴的交点问题,由题意得出抛物线与x轴有两个交点是解题的关键.3、 1 【解析】【分析】(1)连接AO,DO,证明,可得,求出即可求解;(2)设,则,由勾股定理可得,即可求EF的最小值【详解】解:(1)连接AO,DO,四边形ABCD是正方形,O是中心,故答案为:1;(2)设,则, , 在中,当时,EF有最小值,故答案为:【考点】本题考查正方形的性质,全等三角形的判定与性质,二次函数的性质,熟练掌握二次函数求最值的方法是解题的关键4、【解析】【分析】正方体有6个面,每一个面都是边长为x的正方形,这6个正方形的面积和就是该正方体的表面积【详解】解:正方体有6个面,每一个面都是边长

    22、为x的正方形,表面积故答案为:【考点】本题考查了列二次函数关系式,理解两个变量之间的关系是得出关系式的关键5、【解析】【分析】根据二次函数的图象与系数的关系即可求出答案【详解】解:由对称轴可知:x2,4ab0,故正确;由图可知:x3时,y0,9a3bc0,即9ac3b,故正确;令x1,y0,abc0,b4a,c5a,8a7b2c8a28a10a30a由开口可知:a0,8a7b2c30a0,故正确;由抛物线的对称性可知:点C关于直线x2的对称点为(,y3),3,y1y2y3故错误;由题意可知:(1,0)关于直线x2的对称点为(5,0),二次函数yax2bxca(x1)(x5),令y3,直线y3与

    23、抛物线ya(x1)(x5)的交点的横坐标分别为x1,x2,x115x2故正确;故答案为:【考点】本题考查二次函数的图象,解题的关键是正确理解二次函数的图象与系数之间的关系,本题属于中等题型三、解答题1、(1)(),且x为整数;(2),且x为整数;(3)a=30【解析】【分析】(1)根据题意列函数关系式和不等式组,于是得到结论;(2)根据题意列方程和不等式,于是得到结论;(3)根据题意列函数关系式,然后根据二次函数的性质即可得到结论【详解】解:(1)由题意得,解得,故的取值范围为且为整数;(2)的取值范围为理由如下:,当时,解得:或要使,得;,;(3)设捐款后每天的利润为元,则,对称轴为,抛物线

    24、开口向下,当时,随的增大而增大,当时,最大,解得【考点】本题考查了二次函数的应用,一元一次不等式的应用,列函数关系式等等,最大销售利润的问题常利用函数的增减性来解答2、(1);(2)5;(3)时,S有最大值【解析】【分析】(1)利用待定系数法即可求解;(2)作点O关于直线BC的对称点D,连接AD,交BC于点Q,此时|QO|+|QA|有最小值为AD,利用勾股定理即可求解;(3)先求得直线BC的表达式为y=x3,直线AC的表达式为y=3x3可设P(m,m22m3)得到直线PQ的表达式可设为y=3x+ m2+m3,由得到二次函数,再利用二次函数的性质求解即可【详解】(1)由已知:y=a(x3)(x+

    25、1),将(0,3)代入上式得:3=a(03)(0+1),a=1,抛物线的解析式为y=2x3;(2)作点O关于直线BC的对称点D,连接DC 、DB,B(3,0),C(0,3),BOC=90,OB=OC=3,O、D关于直线BC对称,四边形OBDC为正方形,D(3,3),连接AD,交BC于点Q,由对称性|QD|=|QO|,此时|QO|+|QA|有最小值为AD,AD=,|QO|+|QA|有最小值为5;(3)由已知点A(1,0), B(3,0),C(0,3),设直线BC的表达式为y=kx3,把B(3,0)代入得:0=3k3,解得:,直线BC的表达式为y=x3,同理:直线AC的表达式为y=3x3PQAC,

    26、直线PQ的表达式可设为y=3x+b,由(1)可设P(m,m22m3)代入直线PQ的表达式可得b= m2+m3,直线PQ的表达式可设为y=3x+ m2+m3,由,解得,即,由题意:,P,Q都在四象限,P,Q的纵坐标均为负数,即,根据已知条件P的位置可知时,S最大,即时,S有最大值【考点】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数,二次函数的解析式,二次函数的最值等知识,数形结合,熟练掌握相关性质及定理是解题的关键3、(1),9600;(2)降价4元,最大利润为9800元;(3)43【解析】【分析】(1)若降价元,则每天销量可增加千克,根据利润公式求解并整理即可得到

    27、解析式,然后代入求出对应函数值即可;(2)将(1)中的解析式整理为顶点式,然后利用二次函数的性质求解即可;(3)令可解出对应的的值,然后根据“让利于民”的原则选择合适的的值即可【详解】(1)若降价元,则每天销量可增加千克,整理得:,当时,每天的利润为9600元;(2),当时,取得最大值,最大值为9800,降价4元,利润最大,最大利润为9800元;(3)令,得:,解得:,要让利于民,(元)定价为43元【考点】本题考查二次函数的实际应用,弄清数量关系,准确求出函数解析式并熟练掌握二次函数的性质是解题关键4、(1),;(2)50元或80元;(3)商场销售该品牌玩具获利的最大利润是10560元【解析】

    28、【分析】(1)根据销售量与销售单价之间的变化关系就可以直接求出y与x之间的关系式;根据销售问题的利润=售价-进价就可以表示出w与x之间的关系;(2)根据题意得方程求得x1=50,x2=80,于是得到结论;(3)根据销售单价不低于45元且商场要完成不少于480件的销售任务求得45x52,根据二次函数的性质得到当45x52时,y随x增大而增大,于是得到结论【详解】解:(1)依等量关系式“销量=原销量-因涨价而减少销量,总利润=单个利润销量”可列式为: y=600-10(x-40)=-10x+1000;W=(x-30)(-10x+1000)=-10+1300x-30000(2)由题意可得:10+13

    29、00x30000=10000,解得:x=50或x=80,该玩具销售单价x应定为50元或80元(3)由题意可得:,解得:45x52,W=10+1300x30000=10(+12250,100,W随x的增大而减小,又45x52,当x=52时,W有最大值,最大值为10560元,商场销售该品牌玩具获利的最大利润是10560元【考点】本题考查了一元二次方程的解法的运用,二次函数的解析式的运用,二次函数的顶点式的运用,解答时求出二次函数的解析式是关键5、(1);(2)对称轴为x=4;顶点坐标为(4,2);(3)6【解析】【分析】(1)二次函数图象经过A(2,0)、B(0,-6)两点,两点代入,算出b和c,即可得解析式(2)根据顶点坐标公式和对称轴公式即可求得;(3)先求出对称轴方程,写出C点的坐标,计算出AC,然后由面积公式计算值【详解】解:(1)把A(2,0)、B(0,-6)代入得: 解得:这个二次函数的解析式为;(2),b=4,c=-6对称轴 ,顶点坐标为(4,2);(3)该抛物线对称轴为直线x=4, 点C的坐标为(4,0) AC=OC-OA=4-2=2,【考点】本题考查了待定系数法求二次函数的解析式,要会求二次函数的对称轴,会运用面积公式

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:基础强化人教版九年级数学上册第二十二章二次函数同步训练试题(解析版).docx
    链接地址:https://www.ketangku.com/wenku/file-958325.html
    相关资源 更多
  • 小学二年级数学《角的初步认识》同步练习题标准卷.docx小学二年级数学《角的初步认识》同步练习题标准卷.docx
  • 2017-2018学年高中历史岳麓版必修一习题:第七单元第27课跨世纪的世界格局 WORD版含答案.PPT2017-2018学年高中历史岳麓版必修一习题:第七单元第27课跨世纪的世界格局 WORD版含答案.PPT
  • 2017-2018学年高中历史岳麓版必修3课件:第四单元 第19课 电影与电视 .ppt2017-2018学年高中历史岳麓版必修3课件:第四单元 第19课 电影与电视 .ppt
  • 小学二年级数学《角的初步认识》同步练习题有解析答案.docx小学二年级数学《角的初步认识》同步练习题有解析答案.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第四单元 第17课 诗歌、小说与戏剧 .ppt2017-2018学年高中历史岳麓版必修3课件:第四单元 第17课 诗歌、小说与戏剧 .ppt
  • 小学二年级数学《角的初步认识》同步练习题有精品答案.docx小学二年级数学《角的初步认识》同步练习题有精品答案.docx
  • 小学二年级数学《角的初步认识》同步练习题有答案解析.docx小学二年级数学《角的初步认识》同步练习题有答案解析.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第六单元 第26课 改变世界的高新科技 .ppt2017-2018学年高中历史岳麓版必修3课件:第六单元 第26课 改变世界的高新科技 .ppt
  • 小学二年级数学《角的初步认识》同步练习题有答案.docx小学二年级数学《角的初步认识》同步练习题有答案.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第六单元 第25课 现代科学革命 .ppt2017-2018学年高中历史岳麓版必修3课件:第六单元 第25课 现代科学革命 .ppt
  • 2017-2018学年高中历史岳麓版必修3课件:第五单元 第21课新文化运动 .ppt2017-2018学年高中历史岳麓版必修3课件:第五单元 第21课新文化运动 .ppt
  • 小学二年级数学《角的初步认识》同步练习题有完整答案.docx小学二年级数学《角的初步认识》同步练习题有完整答案.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第五单元 单元小结与测评 .ppt2017-2018学年高中历史岳麓版必修3课件:第五单元 单元小结与测评 .ppt
  • 小学二年级数学《角的初步认识》同步练习题最新.docx小学二年级数学《角的初步认识》同步练习题最新.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第二单元 第9课 诗歌与小说 .ppt2017-2018学年高中历史岳麓版必修3课件:第二单元 第9课 诗歌与小说 .ppt
  • 小学二年级数学《角的初步认识》同步练习题新版.docx小学二年级数学《角的初步认识》同步练习题新版.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第三单元 第15课近代科学技术革命 .ppt2017-2018学年高中历史岳麓版必修3课件:第三单元 第15课近代科学技术革命 .ppt
  • 小学二年级数学《角的初步认识》同步练习题推荐.docx小学二年级数学《角的初步认识》同步练习题推荐.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第一单元 第6课中国古代的科学技术 .ppt2017-2018学年高中历史岳麓版必修3课件:第一单元 第6课中国古代的科学技术 .ppt
  • 小学二年级数学《角的初步认识》同步练习题必考题.docx小学二年级数学《角的初步认识》同步练习题必考题.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第一单元 第3课汉代的思想大一统 .ppt2017-2018学年高中历史岳麓版必修3课件:第一单元 第3课汉代的思想大一统 .ppt
  • 小学二年级数学《角的初步认识》同步练习题往年题考.docx小学二年级数学《角的初步认识》同步练习题往年题考.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第6课 中国古代的科学技术 .ppt2017-2018学年高中历史岳麓版必修3课件:第6课 中国古代的科学技术 .ppt
  • 小学二年级数学《角的初步认识》同步练习题带解析答案.docx小学二年级数学《角的初步认识》同步练习题带解析答案.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第3课 汉代的思想大一统 .ppt2017-2018学年高中历史岳麓版必修3课件:第3课 汉代的思想大一统 .ppt
  • 小学二年级数学《角的初步认识》同步练习题带精品答案.docx小学二年级数学《角的初步认识》同步练习题带精品答案.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第2课 战国时期的百家争鸣 .ppt2017-2018学年高中历史岳麓版必修3课件:第2课 战国时期的百家争鸣 .ppt
  • 2017-2018学年高中历史岳麓版必修3课件:第29课 百花齐放 百家争鸣 .ppt2017-2018学年高中历史岳麓版必修3课件:第29课 百花齐放 百家争鸣 .ppt
  • 小学二年级数学《角的初步认识》同步练习题带答案(黄金题型).docx小学二年级数学《角的初步认识》同步练习题带答案(黄金题型).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1