分享
分享赚钱 收藏 举报 版权申诉 / 27

类型基础强化人教版九年级数学上册第二十四章圆定向测试试题(含详解).docx

  • 上传人:a****
  • 文档编号:958461
  • 上传时间:2025-12-19
  • 格式:DOCX
  • 页数:27
  • 大小:874.75KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    基础 强化 人教版 九年级 数学 上册 第二 十四 定向 测试 试题 详解
    资源描述:

    1、人教版九年级数学上册第二十四章圆定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,矩形中,分别是,边上的动点,以为直径的与交于点,则的最大值为()A48B45C42D402、如图1,一个扇形纸

    2、片的圆心角为90,半径为6如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A6B69C12D3、如图,AB是O的直径,C,D是O上位于AB异侧的两点下列四个角中,一定与ACD互余的角是()AADCBABDCBACDBAD4、如图,已知是的两条切线,A,B为切点,线段交于点M给出下列四种说法:;四边形有外接圆;M是外接圆的圆心,其中正确说法的个数是()A1B2C3D45、如图,正方形的边长为4,以点为圆心,为半径画圆弧得到扇形(阴影部分,点在对角线上)若扇形正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是()AB1CD6、已知圆内接正三

    3、角形的面积为,则该圆的内接正六边形的边心距是()ABCD7、如图,在ABC中,cosB,sinC,AC5,则ABC的面积是( )A B12C14D218、如图,五边形是O的内接正五边形,则的度数为()ABCD9、如图,O的半径为5cm,直线l到点O的距离OM=3cm,点A在l上,AM=3.8cm,则点A与O的位置关系是()A在O内B在O上C在O外D以上都有可能10、如图,AB是O的直径,BC与O相切于点B,AC交O于点D,若ACB=50,则BOD等于()A40B50C60D80第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在O中,CD是直径,弦ABCD,垂足为E

    4、,连接BC,若AB=cm,则圆O的半径为_cm2、如图,将三角形AOC绕点O顺时针旋转120得三角形BOD,已知OA=4,OC=1,那么图中阴影部分的面积为_(结果保留)3、如图,在的方格纸中,每个小方格都是边长为1的正方形,其中A、B、C为格点,作的外接圆,则的长等于_4、如图,正五边形ABCDE内接于O,点F在上,则CFD_度5、如图,是的直径,弦于点E,则的半径_三、解答题(5小题,每小题10分,共计50分)1、如图,为的直径,射线交于点F,点C为劣弧的中点,过点C作,垂足为E,连接(1)求证:是的切线;(2)若,求阴影部分的面积2、如图,在RtABC中,C90,BD平分ABC,点O在A

    5、B上,以点O为圆心,OB为半径的圆经过点D,交BC于点E(1)求证:AC是O的切线;(2)若OB2,CD,求图中阴影部分的面积(结果保留)3、【问题提出】如何用圆规和无刻度的直尺作一条直线或圆弧平分已知扇形的面积?【初步尝试】如图1,已知扇形,请你用圆规和无刻度的直尺过圆心作一条直线,使扇形的面积被这条直线平分;【问题联想】如图2,已知线段,请你用圆规和无刻度的直尺作一个以为斜边的等腰直角三角形;【问题再解】如图3,已知扇形,请你用圆规和无刻度的直尺作一条以点为圆心的圆弧,使扇形的面积被这条圆弧平分(友情提醒:以上作图均不写作法,但需保留作图痕迹)4、如图,已知点在上,点在外,求作一个圆,使它

    6、经过点,并且与相切于点(要求写出作法,不要求证明)5、如图,四边形内接于,对角线,垂足为,于点,直线与直线于点(1)若点在内,如图1,求证:和关于直线对称;(2)连接,若,且与相切,如图2,求的度数-参考答案-一、单选题1、A【解析】【分析】过A点作AHBD于H,连接OM,如图,先利用勾股定理计算出BD=75,则利用面积法可计算出AH=36,再证明点O在AH上时,OH最短,此时HM有最大值,最大值为24,然后根据垂径定理可判断MN的最大值【详解】解:过A点作AHBD于H,连接OM,如图,在RtABD中,BD=,AHBD=ADAB,AH=36,O的半径为26,点O在AH上时,OH最短,HM=,此

    7、时HM有最大值,最大值为:24,OHMN,MN=2MH,MN的最大值为224=48故选:A【考点】本题考查了垂径定理:直于弦的直径平分这条弦,并且平分弦所对的两条弧也考查了矩形的性质和勾股定理2、A【解析】【分析】连接OD,如图,利用折叠性质得由弧AD、线段AC和CD所围成的图形的面积等于阴影部分的面积,AC=OC,则OD=2OC=6,CD=3,从而得到CDO=30,COD=60,然后根据扇形面积公式,利用由弧AD、线段AC和CD所围成的图形的面积=S扇形AOD-SCOD,进行计算即可【详解】解:连接OD,如图,扇形纸片折叠,使点A与点O恰好重合,折痕为CD,ACOC,OD2OC6,CD,CD

    8、O30,COD60,由弧AD、线段AC和CD所围成的图形的面积S扇形AODSCOD6,阴影部分的面积为6.故选A【考点】本题考查了扇形面积的计算:阴影面积的主要思路是将不规则图形面积转化为规则图形的面积记住扇形面积的计算公式也考查了折叠性质3、D【解析】【分析】由圆周角定理得出ACBACD+BCD90,BCDBAD,得出ACD+BAD90,即可得出答案.【详解】解:连接BC,如图所示:AB是O的直径,ACBACD+BCD90,BCDBAD,ACD+BAD90,故选:D.【考点】此题考查了圆周角定理:同弧所对的圆周角相等,直径所对的圆周角是直角,正确掌握圆周角定理是解题的关键.4、C【解析】【分

    9、析】由切线长定理判断,结合等腰三角形的性质判断,利用切线的性质与直角三角形的斜边上的中线等于斜边的一半,判断,利用反证法判断【详解】如图, 是的两条切线, 故正确, 故正确, 是的两条切线, 取的中点,连接,则 所以:以为圆心,为半径作圆,则共圆,故正确, M是外接圆的圆心, 与题干提供的条件不符,故错误,综上:正确的说法是个,故选C【考点】本题考查的是切线长定理,三角形的外接圆,四边形的外接圆,掌握以上知识是解题的关键5、D【解析】【分析】根据题意,扇形ADE中弧DE的长即为圆锥底面圆的周长,即通过计算弧DE的长,再结合圆的周长公式进行计算即可得解【详解】正方形的边长为4是正方形的对角线圆锥

    10、底面周长为,解得该圆锥的底面圆的半径是,故选:D【考点】本题主要考查了扇形的弧长公式,圆的周长公式,正方形的性质以及圆锥的相关知识点,熟练掌握弧长公式及圆的周长公式是解决本题的关键6、B【解析】【分析】根据题意可以求得半径,进而解答即可【详解】因为圆内接正三角形的面积为,所以圆的半径为,所以该圆的内接正六边形的边心距sin601,故选B【考点】本题考查正多边形和圆,解答本题的关键是明确题意,求出相应的图形的边心距7、A【解析】【分析】根据已知作出三角形的高线AD,进而得出AD,BD,CD,的长,即可得出三角形的面积【详解】解:过点A作ADBC,ABC中,cosB=,sinC=,AC=5,cos

    11、B=,B=45,sinC=,AD=3,CD=4,BD=3,则ABC的面积是:ADBC=3(3+4)=故选A【考点】此题主要考查了解直角三角形的知识,作出ADBC,进而得出相关线段的长度是解决问题的关键8、D【解析】【分析】先根据正五边形的内角和求出每个内角,再根据等边对等角得出ABE=AEB,然后利用三角形内角和求出ABE=即可【详解】解:五边形是O的内接正五边形,A=ABC=,AB=AE,ABE=AEB,ABE=,故选:D【考点】本题考查圆内接正五边形的性质,等腰三角形性质,三角形内角和公式,角的和差计算,掌握圆内接正五边形的性质,等腰三角形性质,三角形内角和公式,角的和差计算是解题关键9、

    12、A【解析】【详解】如图,连接OA,则在直角OMA中,根据勾股定理得到OA=点A与O的位置关系是:点A在O内 故选A 10、D【解析】【分析】根据切线的性质得到ABC=90,根据直角三角形的性质求出A,根据圆周角定理计算即可【详解】BC是O的切线,ABC=90,A=90-ACB=40,由圆周角定理得,BOD=2A=80,故选D【考点】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键二、填空题1、2【解析】【详解】解:如图,连接OB 在O中,CD是直径,弦ABCDAE=BE,且OBE是等腰直角三角形AB=cmBE=cmOB=2 cm故答案为:2【考点】本题考查了垂径

    13、定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧也考查了圆周角定理和等腰直角三角形的性质2、5【解析】【分析】根据旋转的性质可以得到阴影部分的面积=扇形OAB的面积扇形OCD的面积,利用扇形的面积公式计算即可求解【详解】AOCBOD,阴影部分的面积=扇形OAB的面积扇形OCD的面积5故答案为5【考点】本题考查了旋转的性质以及扇形的面积公式,正确理解:阴影部分的面积=扇形OAB的面积扇形OCD的面积是解题的关键3、【解析】【分析】由AB、BC、AC长可推导出ACB为等腰直角三角形,连接OC,得出BOC90,计算出OB的长就能利用弧长公式求出的长了【详解】每个小方格都是边长为1的正方形,AB2

    14、,AC,BC,AC2BC2AB2,ACB为等腰直角三角形,AB45,连接OC,则COB90,OB的长为:故答案为:【考点】本题考查了弧长的计算以及圆周角定理,解题关键是利用三角形三边长通过勾股定理逆定理得出ACB为等腰直角三角形4、36【解析】【分析】连接OC,OD求出COD的度数,再根据圆周角定理即可解决问题【详解】如图,连接OC,OD五边形ABCDE是正五边形,COD=72,CFD=COD=36,故答案为:36【考点】本题考查了正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识5、【解析】【分析】设半径为r,则,得到,由垂径定理得到,再根据勾股定理,即可求出答案【详解】解:由题意

    15、,设半径为r,则,是的直径,弦于点E,点E是CD的中点,在直角OCE中,由勾股定理得,即,解得:故答案为:【考点】本题考查了垂径定理,勾股定理,解题的关键是熟练掌握垂径定理和勾股定理进行解题三、解答题1、(1)证明见解析;(2)【解析】【分析】(1)连接BF,证明BF/CE,连接OC,证明OCCE即可得到结论;(2)连接OF,求出扇形FOC的面积即可得到阴影部分的面积【详解】(1)连接,是的直径,即,连接,点C为劣弧的中点,OC是的半径,CE是的切线;(2)连接,点C为劣弧的中点, S扇形FOC=,即阴影部分的面积为:【考点】本题主要考查了切线的判定以及扇形面积的求法,熟练掌握切线的判定定理以

    16、及扇形面积的求法是解答此题的关键2、(1)见解析;(2)【解析】【分析】(1)欲证明AC是O的切线,只要证明ODAC即可(2)证明OBE是等边三角形即可解决问题【详解】(1)证明:连接OD,如图,BD为ABC平分线,12,OBOD,13,23,ODBC,C90,ODA90,ODAC,AC是O的切线(2)过O作OGBC,连接OE,则四边形ODCG为矩形,GCODOB2,OGCD,在RtOBG中,利用勾股定理得:BG1,BE2,则OBE是等边三角形,阴影部分面积为2【考点】本题考查切线的判定和性质,等边三角形的判定和性质,思想的面积公式等知识,解题的关键是熟练掌握基本知识,属于中考常考题型3、见解

    17、析【解析】【分析】【初步尝试】如图1,作AOB的角平分线所在直线即为所求;【问题联想】如图2,先作MN的线段垂直平分线交MN于点O,再以O为圆心MO为半径作圆,与垂直平分线的交点即为等腰直角三角形的顶点;【问题再解】如图3先作OB的线段垂直平分线交OB于点N,再以N为圆心NO为半径作圆, 与垂直平分线的交点为M,然后以O为圆心,OM为半径作圆与扇形所交的圆弧即为所求【详解】【初步尝试】如图所示,作AOB的角平分线所在直线OP即为所求;【问题联想】如图,先作MN的线段垂直平分线交MN于点O,再以O为圆心MO为半径作圆,与垂直平分线的交点即为等腰直角三角形的顶点;【问题再解】如图,先作OB的线段垂

    18、直平分线交OB于点N,再以N为圆心NO为半径作圆, 与垂直平分线的交点为M,然后以O为圆心,OM为半径作圆与扇形所交的圆弧CD即为所求【考点】本题考查了尺规作图,角平分线的性质,线段垂直平分线的性质,扇形的面积等知识,解决此类题目的关键是熟悉基本几何图形的性质,掌握基本作图方法4、见解析【解析】【分析】先确定圆心,再确定圆的半径,画圆即可【详解】解:如图,连接、,作线段的垂直平分线交的延长线于一点,交点即为,以为圆心,或的长度为半径作圆,即为所求【考点】本题考查了确定圆的条件和相切两圆的性质,作图是难点,注:确定圆,即确定圆心和半径5、(1)见解析;(2)【解析】【分析】(1)根据垂直及同弧所对圆周角相等性质,可得,可证与全等,得到,进一步即可证点和关于直线成轴对称;(2)作出相应辅助线如解析图,可得与全等,利用全等三角形的性质及切线的性质,可得,根据平行线的性质及三角形内角和即可得出答案【详解】解:(1)证明:,又同弧所对圆周角相等,在与中,又,点和关于直线成轴对称;(2)如图,延长交于点,连接,、四点共圆,、四点共圆,在与中,为等腰直角三角形,又,与相切,【考点】题目主要考查圆的有关性质、三角形全等、成轴对称、平行线性质等,作出相应辅助线及对各知识点的熟练运用是解题的关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:基础强化人教版九年级数学上册第二十四章圆定向测试试题(含详解).docx
    链接地址:https://www.ketangku.com/wenku/file-958461.html
    相关资源 更多
  • 小学二年级数学《角的初步认识》同步练习题标准卷.docx小学二年级数学《角的初步认识》同步练习题标准卷.docx
  • 2017-2018学年高中历史岳麓版必修一习题:第七单元第27课跨世纪的世界格局 WORD版含答案.PPT2017-2018学年高中历史岳麓版必修一习题:第七单元第27课跨世纪的世界格局 WORD版含答案.PPT
  • 2017-2018学年高中历史岳麓版必修3课件:第四单元 第19课 电影与电视 .ppt2017-2018学年高中历史岳麓版必修3课件:第四单元 第19课 电影与电视 .ppt
  • 小学二年级数学《角的初步认识》同步练习题有解析答案.docx小学二年级数学《角的初步认识》同步练习题有解析答案.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第四单元 第17课 诗歌、小说与戏剧 .ppt2017-2018学年高中历史岳麓版必修3课件:第四单元 第17课 诗歌、小说与戏剧 .ppt
  • 小学二年级数学《角的初步认识》同步练习题有精品答案.docx小学二年级数学《角的初步认识》同步练习题有精品答案.docx
  • 小学二年级数学《角的初步认识》同步练习题有答案解析.docx小学二年级数学《角的初步认识》同步练习题有答案解析.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第六单元 第26课 改变世界的高新科技 .ppt2017-2018学年高中历史岳麓版必修3课件:第六单元 第26课 改变世界的高新科技 .ppt
  • 小学二年级数学《角的初步认识》同步练习题有答案.docx小学二年级数学《角的初步认识》同步练习题有答案.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第六单元 第25课 现代科学革命 .ppt2017-2018学年高中历史岳麓版必修3课件:第六单元 第25课 现代科学革命 .ppt
  • 2017-2018学年高中历史岳麓版必修3课件:第五单元 第21课新文化运动 .ppt2017-2018学年高中历史岳麓版必修3课件:第五单元 第21课新文化运动 .ppt
  • 小学二年级数学《角的初步认识》同步练习题有完整答案.docx小学二年级数学《角的初步认识》同步练习题有完整答案.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第五单元 单元小结与测评 .ppt2017-2018学年高中历史岳麓版必修3课件:第五单元 单元小结与测评 .ppt
  • 小学二年级数学《角的初步认识》同步练习题最新.docx小学二年级数学《角的初步认识》同步练习题最新.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第二单元 第9课 诗歌与小说 .ppt2017-2018学年高中历史岳麓版必修3课件:第二单元 第9课 诗歌与小说 .ppt
  • 小学二年级数学《角的初步认识》同步练习题新版.docx小学二年级数学《角的初步认识》同步练习题新版.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第三单元 第15课近代科学技术革命 .ppt2017-2018学年高中历史岳麓版必修3课件:第三单元 第15课近代科学技术革命 .ppt
  • 小学二年级数学《角的初步认识》同步练习题推荐.docx小学二年级数学《角的初步认识》同步练习题推荐.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第一单元 第6课中国古代的科学技术 .ppt2017-2018学年高中历史岳麓版必修3课件:第一单元 第6课中国古代的科学技术 .ppt
  • 小学二年级数学《角的初步认识》同步练习题必考题.docx小学二年级数学《角的初步认识》同步练习题必考题.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第一单元 第3课汉代的思想大一统 .ppt2017-2018学年高中历史岳麓版必修3课件:第一单元 第3课汉代的思想大一统 .ppt
  • 小学二年级数学《角的初步认识》同步练习题往年题考.docx小学二年级数学《角的初步认识》同步练习题往年题考.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第6课 中国古代的科学技术 .ppt2017-2018学年高中历史岳麓版必修3课件:第6课 中国古代的科学技术 .ppt
  • 小学二年级数学《角的初步认识》同步练习题带解析答案.docx小学二年级数学《角的初步认识》同步练习题带解析答案.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第3课 汉代的思想大一统 .ppt2017-2018学年高中历史岳麓版必修3课件:第3课 汉代的思想大一统 .ppt
  • 小学二年级数学《角的初步认识》同步练习题带精品答案.docx小学二年级数学《角的初步认识》同步练习题带精品答案.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第2课 战国时期的百家争鸣 .ppt2017-2018学年高中历史岳麓版必修3课件:第2课 战国时期的百家争鸣 .ppt
  • 2017-2018学年高中历史岳麓版必修3课件:第29课 百花齐放 百家争鸣 .ppt2017-2018学年高中历史岳麓版必修3课件:第29课 百花齐放 百家争鸣 .ppt
  • 小学二年级数学《角的初步认识》同步练习题带答案(黄金题型).docx小学二年级数学《角的初步认识》同步练习题带答案(黄金题型).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1