分享
分享赚钱 收藏 举报 版权申诉 / 24

类型基础强化人教版八年级数学上册第十二章全等三角形同步训练试卷(含答案详解).docx

  • 上传人:a****
  • 文档编号:958664
  • 上传时间:2025-12-19
  • 格式:DOCX
  • 页数:24
  • 大小:737.58KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    基础 强化 人教版 八年 级数 上册 第十二 全等 三角形 同步 训练 试卷 答案 详解
    资源描述:

    1、八年级数学上册第十二章全等三角形同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示,是的边上的中线,cm,cm,则边的长度可能是()A3cmB5cmC14cmD13cm2、如图,ABC中,已

    2、知B=C,点E,F,P分别是AB,AC,BC上的点,且BE=CP,BP=CF,若A=112,则EPF的度数是()A34B36C38D403、如图,把沿线段折叠,使点落在点处;若,则的度数为()ABCD4、有一个小口瓶(如图所示),想知道它的内径是多少,但是尺子不能伸到里边直接测,于是拿两根长度相同的细木条,把两根细木条的中点固定在一起,木条可以绕中点转动,这样只要量出AB的长,就可以知道玻璃瓶的内径是多少,那么OABOCD理由是()A边角边B角边角C边边边D角角边5、如图,已知ABCDCB添加一个条件后,可得ABCDCB,则在下列条件中,不能添加的是()AACDBBABDCCADDABDDCA

    3、6、如图给出了四组三角形,其中全等的三角形有()组 A1B2C3 D47、如图,在ABC中,C90,ACBC,AD平分CAB交BC于D,DEAB于E,若AB7cm,则DBE的周长是()A6cmB7cmC8cmD9cm8、如图,B,C,E,F四点在一条直线上,下列条件能判定ABC与DEF全等的是()AABDE,A=D,BE=CFBABDE,AB=DE,AC=DFCABDE,AC=DF,BE=CFDABDE,ACDF,A=D9、作平分线的作图过程如下:作法:(1)在和上分别截取、,使(2)分别以,为圆心,大于的长为半径作弧,两弧交于点(3)作射线,则就是的平分线用下面的三角形全等的判定解释作图原理

    4、,最为恰当的是()ABCD10、如图,平行四边形ABCD中,E,F是对角线BD上的两点,如果添加一个条件使ABECDF,则添加的条件不能是()AAE=CFBBE=FDCBF=DED1=2第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知AOB60,以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于MN的长度为半径作弧,两弧在AOB内交于点P,以OP为边作POC15,则BOC的度数为_2、如图,四边形ABCD,连接BD,ABAD,CEBD,ABCE,BDCD若AD5,CD7,则BE_3、如图,已知,添加一个条件,使,你添加的条件是_(填

    5、一个即可)4、如图,BEAC,垂足为D,且ADCD,BDED若ABC54,则E_5、在ABC中,C=90,AD是ABC的角平分线,BC=6、AC=8、AB=10,则点D到AB的距离为_三、解答题(5小题,每小题10分,共计50分)1、如图,若OADOBC,且O=65,BEA=135,求C的度数2、在中,直线经过点C,且于D,于E,(1)当直线绕点C旋转到图1的位置时,显然有:(不必证明);(2)当直线绕点C旋转到图2的位置时,求证:;(3)当直线MN绕点C旋转到图3的位置时,试问、具有怎样的等量关系?请直接写出这个等量关系3、如图,在四边形中,分别是,上的点,连接,(1)如图,求证:;(2)如

    6、图,当周长最小时,求的度数;(3)如图,若四边形为正方形,点、分别在边、上,且,若,请求出线段的长度4、如图,小明和小华两家位于A,B两处,隔河相望要测得两家之间的距离,小明设计如下方案:从点B出发沿河岸画一条射线BF,在BF上截取,过点D作,取点E使E,C,A在同一条直线上,则DE的长就是A,B之间的距离,说明他设计的道理5、如图,已知(1)请用尺规作图在内部找一点,使得点到、的距离相等,(不写作图步骤,保留作图痕迹);(2)若的周长为,面积为,求点到的距离-参考答案-一、单选题1、B【解析】【分析】延长AD至M使DM=AD,连接CM,根据SAS得出,得出AB=CM=4cm,再根据三角形的三

    7、边关系得出AC的范围,从而得出结论【详解】解:延长AD至M使DM=AD,连接CM,是的边上的中线,BD=CD,ADB=CDM,,MC=AB=5cm,AD=DM=4cm,AM=8cm在中,即:3AC13,故选:B【考点】本题考查了全等三角形的判定与性质以及三角形的三边关系,根据三角形的三边关系找出AC长度的取值范围是解题的关键2、A【解析】【分析】由三角形内角和定理可得B=C=34,由EBPPCF可得EPB=PFC,再由三角形外角的性质便可解答;【详解】解:BAC中,B=C,A=112,则B=C=34,EBP和PCF中:BE=CP,EBP=PCF,BP=CF,EBPPCF(SAS),EPB=PF

    8、C,BPF=EPB+EPF=C+PFC,EPF=C=34,故选:A【考点】本题考查了三角形内角和定理,全等三角形的判定和性质,三角形外角的性质;掌握全等三角形的判定定理和性质是解题关键3、C【解析】【分析】由于折叠,可得三角形全等,运用三角形全等得出,利用平行线的性质可得出则即可求【详解】解:沿线段折叠,使点落在点处, , , , , ,故选:C【考点】本题考查了全等三角形的性质及三角形内角和定理、平行线的性质;解题的关键是,理解折叠就是得到全等的三角形,根据全等三角形的对应角相等就可以解决4、A【解析】【详解】解:根据SAS得:OABODC故选A.5、A【解析】【分析】先要确定现有已知在图形

    9、上的位置,结合全等三角形的判定方法对选项逐一验证,排除错误的选项【详解】解:ABCDCB,BCBC,A、添加ACDB,不能得ABCDCB,符合题意;B、添加ABDC,利用SAS可得ABCDCB,不符合题意;C、添加AD,利用AAS可得ABCDCB,不符合题意;D、添加ABDDCA,ACBDBC,利用ASA可得ABCDCB,不符合题意;故选:A【考点】本题主要考查三角形全等的判定,熟练掌握判定方法是解题的关键6、D【解析】【详解】分析:根据全等三角形的判定解答即可详解:图A可以利用AAS证明全等,图B可以利用SAS证明全等,图C可以利用SAS证明全等,图D可以利用ASA证明全等其中全等的三角形有

    10、4组,故选D点睛:此题考查全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目比较典型,难度适中7、B【解析】【分析】由在ABC中,C=90,AC=BC,BAC的平分线AD交BC于D,DEAB于E,根据角平分线的性质,可得CD=ED,AC=AE=BC,继而可得DBE的周长=AB【详解】在ABC中,C=90,BAC的平分线AD交BC于D,DEAB于E,CD=ED,ADC=ADE,AE=AC,AC=BC,BC=AE,DBE的周长是:BD+DE+BE=BD+CD+BE=BC+BE=AE+BE=AB=7cm故选 B【考点】此题考查了角平分线的性质此题难度适中,注意掌

    11、握数形结合思想与转化思想的应用8、A【解析】【分析】根据全等三角形的判定条件逐一判断即可【详解】解:A、,即在和中,故A符合题意;B、,再由,不可以利用SSA证明两个三角形全等,故B不符合题意;C、,再由,不可以利用SSA证明两个三角形全等,故C不符合题意;D、,再由,不可以利用AAA证明两个三角形全等,故D不符合题意;故选A【考点】本题主要考查了全等三角形的判定,熟知全等三角形的判定条件是解题的关键9、A【解析】【分析】根据作图过程可得OD=OE,CE=CD,根据OC为公共边,利用SSS即可证明OCEOCD,即可得答案【详解】分别以,为圆心,大于的长为半径作弧,两弧交于点;CE=CD,在OC

    12、E和OCD中,OCEOCD(SSS),故选:A【考点】本题考查全等三角形的判定,正确找出相等的线段并熟练掌握全等三角形的判定定理是解题关键10、A【解析】【分析】利用平行四边形的性质以及全等三角形的判定分别得出即可【详解】解:A、若添加条件:AE=CF,因为ABD=CDB,不是两边的夹角,所以不能证明ABECDF,所以错误,符合题意,B、若添加条件:BE=FD,可以利用SAS证明ABECDF,所以正确,不符合题意;C、若添加条件:BF=DE,可以得到BE=FD,可以利用SAS证明ABECDF,所以正确,不符合题意;D、若添加条件:1=2,可以利用ASA证明ABECDF,所以正确,不符合题意;故

    13、选:A【考点】本题考查了平行四边形的性质、全等三角形的判定,解题的关键是掌握三角形的判定定理二、填空题1、或【解析】【分析】以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于MN的长度为半径作弧,两弧在内交于点P,则OP为的平分线,以OP为边作,则为作或的角平分线,即可求解【详解】解:以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于MN的长度为半径作弧,两弧在内交于点P,得到OP为的平分线,再以OP为边作,则为作或的角平分线,所以或故答案为:或【考点】本题考查的是复杂作图,主要要理解作图是在作角的平分线,同时要考虑以OP为边

    14、作的两种情况,避免遗漏2、2【解析】【分析】根据HL证明,可得,根据即可求解【详解】解: ABAD,CEBD,在与中, AD5,CD7,BD=CD7,故答案为:2【考点】本题考查了全等三角形的性质与判定,掌握HL证明三角形全等是解题的关键3、(答案不唯一)【解析】【分析】此题是一道开放型的题目,答案不唯一,先根据BCEACD求出BCADCE,再根据全等三角形的判定定理SAS推出即可【详解】解:添加的条件是CBCE,理由是:BCEACD,BCEECAACDECA,BCADCE,在ABC和DEC中, ,ABCDEC(SAS),故答案为:CBCE(答案不唯一)【考点】本题考查了全等三角形的判定定理,

    15、能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL等4、27【解析】【详解】BEAC,AD=CD,AB=CB,即ABC为等腰三角形,BD平分ABC,即ABE=CBE=ABC=27,在ABD和CED中, ,ABDCED(SAS),E=ABE=27故答案是:275、或【解析】【分析】作DEAB于E,如图,先根据勾股定理计算出BC=8,再利用角平分线的性质得到DE=DC,设DE=DC=x,利用面积法得到10x=6(8-x),然后解方程即可【详解】解:作DEAB于E,如图,AD是ABC的一条角平分线,DCAC,DEAB,DE=

    16、DC,设DE=DC=x,SABD=DEAB=ACBD,即10x=8(6-x),解得x=,即点D到AB边的距离为故答案为:【考点】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等,由已知能够注意到D到AB的距离即为DE长是解决的关键三、解答题1、35【解析】【分析】根据全等三角形对应角相等可得C=D,OBC=OAD,再根据三角形的内角和等于180表示出OBC,然后利用四边形的内角和等于360列方程求解即可【详解】C=D,OBC=OAD,O=65,OBC=18065C=115C,在四边形AOBE中,O+OBC+BEA+OAD=360,65+115C+135+115C=360,解得C=

    17、35.【考点】此题考查了全等三角形的性质和四边形的内角和等于360,熟练掌握这两个性质是解题的关键.2、(1)见解析;(2)见解析;(3)DE=BE-AD【解析】【分析】(1)由于ABC中,ACB=90,AC=BC,直线MN经过点C,且ADMN于D,BEMN于E,由此即可证明ADCCEB,然后利用全等三角形的性质即可解决问题;(2)由于ABC中,ACB=90,AC=BC,直线MN经过点C,且ADMN于D,BEMN于E,由此仍然可以证明ADCCEB,然后利用全等三角形的性质也可以解决问题;(3)当直线MN绕点C旋转到图(3)的位置时,仍然ADCCEB,然后利用全等三角形的性质可以得到DE=BE-

    18、AD【详解】解:(1)ABC中,ACB=90,ACD+BCE=90,又直线MN经过点C,且ADMN于D,BEMN于E,ADC=CEB=90ACD+DAC=90,BCE=DAC,在ADC和CEB中,ADCCEB(AAS),CD=BE,CE=AD,DE=CD+CE=AD+BE;(2)ABC中,ACB=90,直线MN经过点C,且ADMN于D,BEMN于E,ADC=CEB=90,ACD+BCE=BCE+CBE=90,而AC=BC,ADCCEB,CD=BE,CE=AD,DE=CE-CD=AD-BE;(3)如图3,ABC中,ACB=90,直线MN经过点C,且ADMN于D,BEMN于E,ADC=CEB=90

    19、,ACD+BCE=BCE+CBE=90,ACD=CBE,AC=BC,ADCCEB,CD=BE,CE=AD,DE=CD-CE=BE-AD;DE、AD、BE之间的关系为DE=BE-AD【考点】此题需要考查了全等三角形的判定与性质,也利用了直角三角形的性质,是一个探究性题目,对于学生的能力要求比较高3、(1)见解析;(2);(3)【解析】【分析】(1)延长到点G,使,连接,首先证明,则有,然后利用角度之间的关系得出,进而可证明,则,则结论可证;(2)分别作点A关于和的对称点,连接,交于点,交于点,根据轴对称的性质有,当点、在同一条直线上时,即为周长的最小值,然后利用求解即可;(3)旋转至的位置,首先

    20、证明,则有,最后利用求解即可【详解】(1)证明:如解图,延长到点,使,连接,在和中,在和中,;(2)解:如解图,分别作点A关于和的对称点,连接,交于点,交于点由对称的性质可得,此时的周长为当点、在同一条直线上时,即为周长的最小值,;(3)解:如解图,旋转至的位置,在和中,【考点】本题主要考查全等三角形的判定及性质,轴对称的性质,掌握全等三角形的判定及性质是解题的关键4、见解析【解析】【分析】根据两直线平行,内错角相等可得,然后利用“角角边”证明和全等,根据全等三角形对应边相等解答;【详解】解:,在和中,即的长就是、两点之间的距离【考点】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键5、 (1)见解析(2)【解析】【分析】(1)根据题意作的角平分线的交点,即为所求;(2)根据(1)的结论,设点到的距离为,则,解方程求解即可(1)如图,点即为所求,(2)设点到的距离为,由(1)可知点到、的距离相等则解得:点到的距离为【考点】本题考查了作角平分线,角平分线的性质,掌握角平分线的性质是解题的关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:基础强化人教版八年级数学上册第十二章全等三角形同步训练试卷(含答案详解).docx
    链接地址:https://www.ketangku.com/wenku/file-958664.html
    相关资源 更多
  • 2016年湖南省长沙市周南中学人教版高一历史必修一课件:第22课 祖国统一大业.ppt2016年湖南省长沙市周南中学人教版高一历史必修一课件:第22课 祖国统一大业.ppt
  • 小学二年级数学《1--9的乘法》同步练习题含完整答案(网校专用).docx小学二年级数学《1--9的乘法》同步练习题含完整答案(网校专用).docx
  • 2016年湖南省长沙市周南中学人教版高一历史必修一课件:第21课 民主政治建设的曲折发展.ppt2016年湖南省长沙市周南中学人教版高一历史必修一课件:第21课 民主政治建设的曲折发展.ppt
  • 小学二年级数学《1--9的乘法》同步练习题含完整答案(精选题).docx小学二年级数学《1--9的乘法》同步练习题含完整答案(精选题).docx
  • 2016年湖南省长沙市周南中学人教版高一历史必修一课件:第1课 夏、商、西周的政治制度.ppt2016年湖南省长沙市周南中学人教版高一历史必修一课件:第1课 夏、商、西周的政治制度.ppt
  • 2016年湖南省长沙市周南中学人教版历史必修二课件:第5课 开辟新航路.ppt2016年湖南省长沙市周南中学人教版历史必修二课件:第5课 开辟新航路.ppt
  • 小学二年级数学《1--9的乘法》同步练习题含完整答案(精品).docx小学二年级数学《1--9的乘法》同步练习题含完整答案(精品).docx
  • 小学二年级数学《1--9的乘法》同步练习题含完整答案(有一套).docx小学二年级数学《1--9的乘法》同步练习题含完整答案(有一套).docx
  • 2016年湖南省长沙市周南中学人教版历史必修一课件:第5课 古代希腊民主政治.ppt2016年湖南省长沙市周南中学人教版历史必修一课件:第5课 古代希腊民主政治.ppt
  • 2016年湖南省长沙市周南中学人教版历史必修一课件:第4课 明清君主专制的加强.ppt2016年湖南省长沙市周南中学人教版历史必修一课件:第4课 明清君主专制的加强.ppt
  • 小学二年级数学《1--9的乘法》同步练习题含完整答案(易错题).docx小学二年级数学《1--9的乘法》同步练习题含完整答案(易错题).docx
  • 2016年湖南省长沙市周南中学人教版历史必修一课件:第25课 两极世界的形成.ppt2016年湖南省长沙市周南中学人教版历史必修一课件:第25课 两极世界的形成.ppt
  • 2016年湖南省长沙市周南中学人教版历史必修一课件:第1课 夏商周的政治制度.ppt2016年湖南省长沙市周南中学人教版历史必修一课件:第1课 夏商周的政治制度.ppt
  • 小学二年级数学《1--9的乘法》同步练习题含完整答案(必刷).docx小学二年级数学《1--9的乘法》同步练习题含完整答案(必刷).docx
  • 2016年湖南省长沙市周南中学人教版历史必修一课件:第17课 解放战争.ppt2016年湖南省长沙市周南中学人教版历史必修一课件:第17课 解放战争.ppt
  • 小学二年级数学《1--9的乘法》同步练习题含完整答案(夺冠).docx小学二年级数学《1--9的乘法》同步练习题含完整答案(夺冠).docx
  • 2016年湖南省长沙市周南中学人教版历史必修一课件:第14课 新民主主义革命的崛起.ppt2016年湖南省长沙市周南中学人教版历史必修一课件:第14课 新民主主义革命的崛起.ppt
  • 小学二年级数学《1--9的乘法》同步练习题含完整答案(夺冠系列).docx小学二年级数学《1--9的乘法》同步练习题含完整答案(夺冠系列).docx
  • 2016年湖南省长沙市周南中学人教版历史必修一课件:第10课 鸦片战争.ppt2016年湖南省长沙市周南中学人教版历史必修一课件:第10课 鸦片战争.ppt
  • 2016年湖南省常德市一中课件选修11-1生命的基础能源——糖类(共12张PPT).ppt2016年湖南省常德市一中课件选修11-1生命的基础能源——糖类(共12张PPT).ppt
  • 小学二年级数学《1--9的乘法》同步练习题含完整答案(名校卷).docx小学二年级数学《1--9的乘法》同步练习题含完整答案(名校卷).docx
  • 2016年湖南省常德市一中化学必修2课件第四章第二节资源综合利用环境保护1 .ppt2016年湖南省常德市一中化学必修2课件第四章第二节资源综合利用环境保护1 .ppt
  • 小学二年级数学《1--9的乘法》同步练习题含完整答案(名师系列).docx小学二年级数学《1--9的乘法》同步练习题含完整答案(名师系列).docx
  • 2016年湖南省常德市一中化学必修2课件来自石油和煤的两种基本化工原料-乙烯 .ppt2016年湖南省常德市一中化学必修2课件来自石油和煤的两种基本化工原料-乙烯 .ppt
  • 2016年湖南省常德市一中化学必修2课件—基本营养物质(第2课时) .ppt2016年湖南省常德市一中化学必修2课件—基本营养物质(第2课时) .ppt
  • 小学二年级数学《1--9的乘法》同步练习题含完整答案(历年真题).docx小学二年级数学《1--9的乘法》同步练习题含完整答案(历年真题).docx
  • 2016年湖南省常德市一中化学必修2课件—基本营养物质(第1课时) .ppt2016年湖南省常德市一中化学必修2课件—基本营养物质(第1课时) .ppt
  • 2016年浙江选考复习人教版选修五专题复习课件-揭开美国政治制度的“面纱”(共14张PPT) .ppt2016年浙江选考复习人教版选修五专题复习课件-揭开美国政治制度的“面纱”(共14张PPT) .ppt
  • 小学二年级数学《1--9的乘法》同步练习题含完整答案(典优).docx小学二年级数学《1--9的乘法》同步练习题含完整答案(典优).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1