2013版高中全程复习方略数学(理) 8-2 直线的交点坐标与距离公式.ppt
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2013版高中全程复习方略数学理 8-2 直线的交点坐标与距离公式 2013 高中 全程 复习 方略 数学 直线 交点 坐标 距离 公式
- 资源描述:
-
1、第二节直线的交点坐标与距离公式三年2考高考指数:1.能用解方程组的方法求两条相交直线的交点坐标;2.掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.1.两点间距离公式、点到直线的距离公式,两平行线间的距离公式是高考的重点;2.常与圆、椭圆、双曲线、抛物线交汇命题;3.多以选择题和填空题为主,有时与其他知识点交汇,在解答题中考查.1.两条直线的交点直线l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0的公共点的坐标与方程组的解一一对应.相交方程组有_,交点坐标就是方程组的解;平行方程组_;重合方程组有_.唯一解无解无数组解【即时应用】(1)思考:如何用两直线的交点
2、判断两直线的位置关系?提示:当两直线有一个交点时,两直线相交;没有交点时,两直线平行;有无数个交点时,两直线重合.(2)直线l1:5x+2y-6=0与l2:3x-5y-16=0的交点P的坐标是_.【解析】由直线l1与l2所组成的方程组得:,直线l1:5x+2y-6=0与l2:3x-5y-16=0的交点P的坐标是(2,-2).答案:(2,-2)(3)直线l1:5x+2y-6=0与l2:5x+2y-16=0的位置关系是_.【解析】由直线l1与l2所组成的方程组无解,直线l1与l2平行.答案:平行2.距离两条平行线Ax+By+C1=0与Ax+By+C2=0间的距离点P0(x0,y0)到直线l:Ax+
3、By+C=0的距离点P1(x1,y1),P2(x2,y2)之间的距离【即时应用】(1)原点到直线x+2y-5=0的距离是_;(2)已知A(a,-5),B(0,10),|AB|=17,则a=_;(3)两平行线y=2x与2x-y=-5间的距离为_.【解析】(1)因为d=(2)依题设及两点间的距离公式得:=17,解得:a=8;(3)因为两平行线方程可化为:2x-y=0与2x-y+5=0.因此,两平行线间的距离为:d=答案:(1)(2)8 (3)两直线的交点问题【方法点睛】1.两直线交点的求法求两直线的交点坐标,就是解由两直线方程组成的方程组,以方程组的解为坐标的点即为交点.2.过直线A1x+B1y+
4、C1=0与A2x+B2y+C2=0交点的直线系方程A1x+B1y+C1+(A2x+B2y+C2)=0.(不包括直线A2x+B2y+C2=0)【例1】(1)(2012 广州模拟)经过点(2,3)且经过两条直线l1:x+3y-4=0,l2:5x+2y+6=0的交点的直线方程为_.(2)已知两直线l1:mx+8y+n=0与l2:2x+my-1=0,若l1与l2相交,求实数m、n满足的条件.【解题指南】(1)可求出两直线的交点坐标,用两点式解决;也可用过两直线交点的直线系解决;(2)两直线相交可考虑直线斜率之间的关系,从而得到m、n满足的条件.【规范解答】(1)方法一:解方程组,得l1与l2的交点是(
5、-2,2),由两点式得所求直线的方程为,即x-4y+10=0.方法二:由于点(2,3)不在直线5x+2y+6=0上,故设所求直线方程为:x+3y-4+(5x+2y+6)=0(R)点(2,3)在直线上,2+33-4+(52+23+6)=0,故所求直线方程为x+3y-4+(-)(5x+2y+6)=0,即x-4y+10=0.(2)因为两直线l1:mx+8y+n=0与l2:2x+my-1=0相交,因此,当m=0时,l1的方程为,l2的方程为x=,两直线相交,此时,实数m、n满足的条件为m=0,nR;当m0时,两直线相交,解得m4,此时,实数m、n满足的条件为m4,nR.【反思感悟】1.本例(1)中是求
6、直线方程,其关键是寻找确定直线的两个条件,可以直接求交点,利用两点式得出方程,此法要注意两点的纵(或横)坐标相同时,两点式方程不适用,也可以利用直线系方程求解,其关键是利用已知点求的值;2.考查两直线相交的条件,即斜率不等或有一条直线的斜率不存在.距离公式的应用【方法点睛】1.两点间的距离的求法设点A(xA,yA),B(xB,yB),|AB|=特例:ABx轴时,|AB|=|yA-yB|ABy轴时,|AB|=|xA-xB|.2.点到直线的距离的求法可直接利用点到直线的距离公式来求,但要注意此时直线方程必须为一般式.3.两平行直线间的距离的求法(1)利用“化归”法将两条平行线间的距离转化为一条直线
7、上任意一点到另一条直线的距离.(2)利用两平行线间的距离公式.【提醒】应用两平行线间的距离公式求距离时,要注意两平行直线方程中x、y的系数必须相等.【例2】已知三条直线l1:2x-y+a=0(a0),l2:-4x+2y+1=0和l3:x+y-1=0,且l1与l2的距离是(1)求a的值;(2)能否找到一点P,使P同时满足下列三个条件:P是第一象限的点;P点到l1的距离是P点到l2的距离的P点到l1的距离与P点到l3的距离之比是.若能,求P点坐标;若不能,说明理由.【解题指南】(1)由l1与l2的距离及两平行线之间的距离公式,可得关于a的方程,解方程即可得出a的值;(2)由点P(x0,y0)满足条
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
