五年高考2022届高考数学复习第八章第四节直线平面平行的判定与性质文全国通用.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
3 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年高 2022 高考 数学 复习 第八 第四 直线 平面 平行 判定 性质 全国 通用
- 资源描述:
-
1、第四节直线、平面平行的判定与性质考点直线、平面平行的判定与性质1(2022辽宁,4)已知m,n表示两条不同直线,表示平面下列说法正确的是()A若m,n,则mn B若m,n,则mnC若m,mn,则n D若m,mn,则n解析若m,n,则m与n可能平行、相交或异面,故A错;B正确;若m,mn,则n或n,故C错误;若m,mn,则n与可能平行、相交或n,故D错误因此选B.答案B2(2022广东,8)设l为直线,是两个不同的平面下列命题中正确的是()A若l,l,则 B若l,l,则C若l,l,则 D若,l,则l解析l,l,则与可能平行,也可能相交,故A项错;由面面平行的判定可知B项正确;由l,l可知,故C项
2、错;由,l可知l与可能平行,也可能相交,还可能l,故D项错故选B.答案B3.(2022四川,6)下列命题正确的是()A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行解析若两条直线和同一平面所成的角相等,则这两条直线可平行、可异面、可相交.选项A错;如果到一个平面距离相等的三个点在同一条直线上或在这个平面的两侧,则经过这三个点的平面与这个平面相交,选项B不正确;如图,平面b,a,a,过直线a作平面c,过直线a作
3、平面d,a,ac,a,ad,dc,c,d,d,又d,db,ab,选项C正确;若两个平面都垂直于第三个平面,则这两个平面可平行、可相交,选项D不正确.答案C4.(2022福建,15)如图,正方体ABCDA1B1C1D1中,AB2,点E为AD的中点,点F在CD上.若EF平面AB1C,则线段EF的长度等于_.解析由EF平面AB1C,知EFAC,EFAC2.答案5.(2022北京,18)如图,在三棱锥VABC中,平面VAB平面ABC,VAB为等边三角形,ACBC,且ACBC,O,M分别为AB,VA的中点.(1)求证:VB平面MOC;(2)求证:平面MOC平面VAB;(3)求三棱锥VABC的体积.解(1
4、)因为O,M分别为AB,VA的中点,所以OMVB,又因为VB平面MOC,所以VB平面MOC.(2)因为ACBC,O为AB的中点,所以OCAB.又因为平面VAB平面ABC,且OC平面ABC,所以OC平面VAB.所以平面MOC平面VAB.(3)在等腰直角三角形ACB中,ACBC,所以AB2,OC1,所以等边三角形VAB的面积SVAB.又因为OC平面VAB.所以三棱锥CVAB的体积等于OCSVAB,又因为三棱锥VABC的体积与三棱锥CVAB的体积相等,所以三棱锥VABC的体积为.6.(2022广东,18)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PDPC4,AB6,BC3.(1)证
5、明:BC平面PDA;(2)证明:BCPD;(3)求点C到平面PDA的距离.解(1)因为四边形ABCD是长方形,所以BCAD,因为BC平面PDA,AD平面PDA,所以BC平面PDA.(2)因为四边形ABCD是长方形,所以BCCD,因为平面PDC平面ABCD,平面PDC平面ABCDCD,BC平面ABCD,所以BC平面PDC,因为PD平面PDC,所以BCPD.(3)取CD的中点E,连接AE和PE.因为PDPC,所以PECD,在RtPED中,PE.因为平面PDC平面ABCD,平面PDC平面ABCDCD,PE平面PDC,所以PE平面ABCD,由(2)知:BC平面PDC,由(1)知:BCAD,所以AD平面
6、PDC,因为PD平面PDC,所以ADPD.设点C到平面PDA的距离为h,因为V三棱锥CPDAV三棱锥PACD,所以SPDAhSACDPE,即h,所以点C到平面PDA的距离是.7.(2022江苏,16)如图,在直三棱柱ABCA1B1C1中,已知ACBC,BCCC1.设AB1的中点为D,B1CBC1E.求证:(1)DE平面AA1C1C;(2)BC1AB1.证明(1)由题意知,E为B1C的中点,又D为AB1的中点,因此DEAC.又因为DE平面AA1C1C,AC平面AA1C1C,所以DE平面AA1C1C.(2)因为棱柱ABCA1B1C1是直三棱柱,所以CC1平面ABC.因为AC平面ABC,所以ACCC
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-239952.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
