五年高考真题2022届高考数学复习第四章第三节y=Asinωx+φ的图象和性质及其综合应用理全国通用.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年高 考真题 2022 高考 数学 复习 第四 三节 Asin 图象 性质 及其 综合 应用 全国 通用
- 资源描述:
-
1、考点一求三角函数的解析式1(2022陕西,3)如图,某港口一天6时到18时的水深变化曲线近似满足函数y3sink,据此函数可知,这段时间水深(单位:m)的最大值为()A5 B6C8 D10解析由题干图易得ymink32,则k5.ymaxk38.答案C2(2022新课标全国,8)函数f(x)cos(x)的部分图象如图所示,则f(x)的单调递减区间为()A.,kZB.,kZC.,kZD.,kZ解析由图象知1,T2.由选项知D正确答案D3(2022湖南,17)已知函数f(x)sincos,g(x)2sin2.(1)若是第一象限角,且f(),求g()的值;(2)求使f(x)g(x)成立的x的取值集合解
2、f(x)sincossin xcos xcos xsin xsin x,g(x)2sin21cos x.(1)由f()得sin .又是第一象限角,所以cos 0.从而g()1cos 11.(2)f(x)g(x)等价于sin x1cos x,即sin xcos x1.于是sin.从而2kx2k,kZ,即2kx2k,kZ.故使f(x)g(x)成立的x的取值集合为x|2kx2k,kZ4(2022四川,18)函数f(x)6cos2sinx3(0)在一个周期内的图象如图所示,A为图象的最高点,B,C为图象与x轴的交点,且ABC为正三角形(1)求的值及函数f(x)的值域;(2)若f(x0),且x0,求f(
3、x01)的值解(1)由已知可得,f(x)3cos xsin x2sin.又正三角形ABC的高为2,从而BC4.所以函数f(x)的周期T428,即8,.函数f(x)的值域为2,2(2)因为f(x0),由(1)有f(x0)2sin,即sin.由x0,知,所以cos.故f(x01)2sin2sin22.5(2022湖北,17)某同学用“五点法”画函数f(x)Asin(x)在某一个周期内的图象时,列表并填入了部分数据,如下表: x02xAsin(x)0550(1) 请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数f(x)的解析式;(2) 将yf(x)图象上所有点向左平行移动(0)个单位长度
4、,得到yg(x)的图象若yg(x)图象的一个对称中心为,求的最小值解(1)根据表中已知数据,解得A5,2,.数据补全如下表:x02xAsin(x)05050且函数表达式为f(x)5sin.(2)由(1)知f(x)5sin,得g(x)5sin.因为ysin x的对称中心为(k,0),kZ.令2x2k,解得x,kZ.由于函数yg(x)的图象关于点成中心对称,令,解得,kZ.由0可知,当k1时,取得最小值.6(2022福建,16)已知等比数列an的公比q3,前3项和S3.(1)求数列an的通项公式;(2)若函数f(x)Asin(2x)(A0,0)在x处取得最大值,且最大值为a3,求函数f(x)的解析
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-240137.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
