2022秋高中数学 第六章 计数原理 综合训练 新人教A版选择性必修第三册.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022秋高中数学 第六章 计数原理 综合训练 新人教A版选择性必修第三册 2022 高中数学 第六 计数 原理 综合 训练 新人 选择性 必修 第三
- 资源描述:
-
1、第六章综合训练一、选择题(本题共8小题,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(x+1)8的展开式的各项系数和为()A.256B.257C.254D.2552.(2022湖南湘潭模拟)如图是一把算盘的初始状态,自右向左,分别是个位、十位、百位、,上面一粒珠(简称上珠)代表5,下面一粒珠(简称下珠)代表1,即五粒下珠的大小等于同组一粒上珠的大小.现在从个位、十位和百位这三组中随机选择往下拨1粒上珠,且往上拨2粒下珠,则算盘可表示的数的个数为()A.9B.18C.27D.363.从4名男同学和3名女同学中选出3名参加某项活动,则男女生都有的不同的选法种数是()A.18B.24C.
2、30D.364.已知(1+ax)6=1+12x+bx2+a6x6,则实数b的值为()A.15B.20C.40D.605.(2020全国高考)x+y2x(x+y)5的展开式中x3y3的系数为()A.5B.10C.15D.206.(2022山东济南月考)(x+2y)5(x-2y)7的展开式中x9y3的系数为()A.-160B.-80C.160D.807.如图所示,要给四块区域分别涂上五种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同颜色,则不同的涂色方法种数为()A.320B.160C.96D.608.某学校实行新课程改革,即除语文、数学、外语三科为必考科目外,还要在物理、化学、
3、生物、历史、地理、思想政治六科中选择三科作为选考科目.已知某生的高考志愿为某大学环境科学专业,按照该大学上一年高考招生选考科目要求,物理、化学必选,为该生安排课表(上午四节、下午四节,每门课每天至少一节),已知该生某天最后两节为自习课,且数学不排下午第一节,语文、外语不相邻(上午第四节和下午第一节不算相邻),则该生该天课表有()A.444种B.1 776种C.1 440种D.1 560种二、选择题(本题共4小题,在每小题给出的选项中,有多项符合题目要求)9.某学生想在物理、化学、生物、思想政治、历史、地理、信息技术这七门课程中选三门作为选考科目,下列说法错误的是()A.若任意选择三门课程,选法
4、种数为A73B.若物理和化学至少选一门,选法种数为C21C52C.若物理和历史不能同时选,选法种数为C73C22C51D.若物理和化学至少选一门,且物理和历史不能同时选,选法种数为C21C52C5110.(2022江苏常州期末)如图,用4种不同的颜色,对四边形中的四个区域进行着色,要求有公共边的两个区域不能用同一种颜色,则不同的着色方法数可以表示为()A.A43A21B.A42A42C.A42(A21)2D.C41A32+C42(A22)211.已知(ax2+1x)n(a0)的展开式中第5项与第7项的二项式系数相等,且展开式的各项系数之和为1 024,则下列说法正确的是()A.展开式中奇数项的
5、二项式系数和为256B.展开式中第6项的系数最大C.展开式中存在常数项D.展开式中含x15的项的系数为4512.(2022安徽亳州期末)已知(1-2x)2 021=a0+a1x+a2x2+a2 021x2 021,下列命题中,正确的是()A.展开式中所有项的二项式系数的和为22 021B.展开式中所有奇次项系数的和为-32021+12C.展开式中所有偶次项系数的和为1-320212D.a12+a222+a323+a202122021=-1三、填空题(本题共4小题)13.某微信群中甲、乙、丙、丁、戊五名成员先后抢4个不同的红包,每人最多抢一个红包,且红包全被抢光,则甲、乙两人都抢到红包的情况有种
6、.14.将5位志愿者分成3组,其中两组各2人,另一组1人,分赴某大型展览会的三个不同场馆服务,不同的分配方案有种.15.二项式(1+2x)4的展开式的各项系数的和为.16.(2022浙江绍兴模拟)已知(x-2)(x+m)5=a6x6+a5x5+a1x+a0,m为常数,若a5=-7,则m=,a6+a5+a1=.四、解答题(本题共6小题,解答应写出文字说明、证明过程或演算步骤)17.(2022上海虹口期末)已知(1-3x)n=a0+a1x+a2x2+a3x3+anxn(n为正整数).(1)若a2=15a0-13a1,求n的值;(2)若n=2 022,A=a0+a2+a4+a2 022,B=a1+a
7、3+a5+a2 021,求A+B和A2-B2的值(结果用指数幂的形式表示).18.某医院有内科医生8名、外科医生6名,现选派4名参加医疗队.(1)甲、乙两人至少有一人参加,有多少种选法?(2)队中至少有一名内科医生和一名外科医生,有几种选法?19.在3x123xn的展开式中,前三项系数的绝对值成等差数列.(1)求展开式的第四项;(2)求展开式的常数项;(3)求展开式中各项的系数和.20.有7本不同的书:(1)全部分给6个人,每人至少一本,有多少种不同的分法?(2)全部分给5个人,每人至少一本,有多少种不同的分法?21.(2022北京昌平期末)有7个人分成两排就座,第一排3人,第二排4人.(1)
8、共有多少种不同的坐法?(2)如果甲和乙都在第二排,共有多少种不同的坐法?(3)如果甲和乙不能坐在每排的两端,共有多少种不同的坐法?22.在(2x-3y)10的展开式中,求:(1)各项的二项式系数的和;(2)分别求奇数项的二项式系数的和与偶数项的二项式系数的和;(3)各项系数之和;(4)分别求奇数项系数的和与偶数项系数的和.第六章综合训练1.A令x=1,则(1+1)8=28=256,即(x+1)8的展开式的各项系数的和为256.故选A.2.B根据算盘的运算法则以及题干中描述的操作,从个、十、百上珠中选1粒往下拨,则有C31种,下珠往上拨分两种情况,全部来自个、十、百,即C31种,或者来自个、十、
9、百中的两个,即C32种,故算盘表示的数的个数为C31(C31+C32)=18.故选B.3.C由于选出的3名学生男女生都有,所以可分成两类:第1类,3人中是1男2女,共有C41C32=43=12(种)不同的选法;第2类,3人中是2男1女,共有C42C31=63=18(种)不同的选法.所以男女生都有的不同的选法种数是12+18=30.4.D(1+ax)6的展开式的通项为Tr+1=C6rarxr,令r=1,则C61a=12,解得a=2,则b=C6222=60.5.C因为(x+y)5的通项公式为C5kx5-kyk(k=0,1,2,3,4,5),所以当k=1时,y2xC51x4y=5x3y3,当k=3时
10、,xC53x2y3=10x3y3,所以x3y3的系数为10+5=15.6.D二项式可以化为(x+2y)(x-2y)5(x-2y)2=(x2-4xy+4y2)(x2-4y2)5,则二项式的展开式中含x9y3的项为-4xyC51(x2)4(-4y2)1=80x9y3,所以x9y3的系数为80,故选D.7.A根据分步乘法计数原理,区域有5种颜色可供选择,区域有4种颜色可供选择,区域和区域只要不选择区域的颜色即可,故各有4种颜色可供选择,所以不同涂色方法有5444=320(种).8.B物理、化学、生物、历史、地理、思想政治六选三,且物理、化学必选,所以只需在生物、历史、地理、思想政治中四选一,有C41
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-240280.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
