2022高三全国统考数学北师大版(理)一轮复习学案:8-1 空间几何体的结构及其三视图、直观图 WORD版含解析.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
4 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022高三全国统考数学北师大版理一轮复习学案:8-1空间几何体的结构及其三视图、直观图 WORD版含解析 2022 全国 统考 数学 北师大 一轮 复习 空间 几何体 结构 及其 视图 直观图
- 资源描述:
-
1、第八章立体几何8.1空间几何体的结构及其三视图、直观图必备知识预案自诊知识梳理1.空间几何体的结构特征(1)多面体棱柱的侧棱都,上、下底面是且平行的多边形.棱锥的底面是,侧面是.棱台可由平行于棱锥底面的平面截棱锥得到,其上、下底面是多边形(2)旋转体圆柱是以的一边所在直线为旋转轴,其余三边旋转一周形成的面所围成的旋转体.圆锥是以直角三角形的一条所在直线为旋转轴,其余两边旋转一周形成的面所围成的旋转体.圆台可以由直角梯形绕垂直于底边的腰所在直线或等腰梯形绕上、下底边中点连线所在直线旋转得到,也可由平行于圆锥底面的平面截得到.球可以由绕直径所在直线旋转得到2.空间几何体的三视图(1)几何体的三视图
2、包括,分别是从几何体的方、方、方观察几何体画出的轮廓线.(2)三视图的画法基本要求:,.画法规则:一样高,一样长,一样宽;看不到的轮廓线画线.3.空间几何体的直观图(1)画法:常用画法.(2)规则原图形中x轴、y轴、z轴两两垂直,直观图中,x轴、y轴的夹角为,z轴与x轴.原图形中平行于坐标轴的线段,在直观图中仍平行于坐标轴.平行于x轴和z轴的线段长度在直观图中,平行于y轴的线段长度在直观图中.1.常见旋转体的三视图(1)球的三视图都是半径相等的圆.(2)底面与水平面平行放置的圆锥的主视图和左视图为全等的等腰三角形.(3)底面与水平面平行放置的圆台的主视图和左视图为全等的等腰梯形.(4)底面与水
3、平面平行放置的圆柱的主视图和左视图为全等的矩形.考点自诊1.判断下列结论是否正确,正确的画“”,错误的画“”.(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.()(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.()(3)棱台是由平行于棱锥底面的平面截棱锥所得的平面与底面之间的部分.()(4)正方体、球、圆锥各自的三视图中,三视图均相同.()(5)画几何体的三视图时,看不到的轮廓线应画虚线.()2.一个多边形沿着垂直于它所在的平面的方向平移一段距离,可以形成的几何体是()A.棱锥B.棱柱C.圆柱D.长方体3.(2020河北邢台模拟,理4)如图,在正方体ABCD-A1B1C1D
4、1中,E为DD1的中点,几何体ABCDEC1的左视图与俯视图如图所示,则该几何体的主视图为()4.(2020北京海淀一模)某四棱锥的三视图如图所示,该四棱锥中最长棱的棱长为()A.5B.22C.23D.135.利用斜二测画法得到的:三角形的直观图一定是三角形;正方形的直观图一定是菱形;等腰梯形的直观图可以是平行四边形;菱形的直观图一定是菱形.以上结论正确的个数是.关键能力学案突破考点空间几何体的结构特征【例1】(1)(2020山东日照模拟)下列结论正确的是()A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边绕旋转轴旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧
5、棱长与底面多边形的边长都相等,则该棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线(2)以下命题:以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;圆柱、圆锥、圆台的底面都是圆;一个平面截圆锥,得到一个圆锥和一个圆台.其中正确命题的个数为()A.0B.1C.2D.3思考如何熟练应用空间几何体的结构特征?解题心得1.要想真正把握几何体的结构特征,必须多角度、全面地去分析,多观察实物,提高空间想象能力.2.紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等
6、基本元素,然后依据题意判定.3.通过反例对结构特征进行辨析,即要说明一个命题是错误的,只要举出一个反例即可.对点训练1(1)下面是关于四棱柱的四个命题:若有一个侧面垂直于底面,则该四棱柱为直四棱柱;若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;若四个侧面两两全等,则该四棱柱为直四棱柱;若四棱柱的四条体对角线两两相等,则该四棱柱为直四棱柱.其中,真命题的编号是.(2)(2020广东佛山模拟)下列结论正确的是()A.侧面都是等腰三角形的三棱锥是正三棱锥B.六条棱长均相等的四面体是正四面体C.有两个侧面是矩形的棱柱是直棱柱D.用一个平面去截圆锥,底面与截面之间的部分叫圆台考点平面图形与其
7、直观图的关系【例2】(2020河北衡水中学调研)如图所示,直观图四边形ABCD是一个底角为45,腰和上底均为1的等腰梯形,那么原平面图形的面积是.思考用斜二测画法画直观图的法则和技巧有哪些?解题心得1.在斜二测画法中,要确定关键点及关键线段的位置,注意“三变”与“三不变”;平面图形的直观图,其面积与原图形的面积的关系是S直观图=24S原图形.2.在原图形中与x轴或y轴平行的线段在直观图中与x轴或y轴平行,原图中不与坐标轴平行的线段可以先画出线段的端点再连线,原图中的曲线段可以通过取一些关键点,作出在直观图中的相应点后,用平滑的曲线连接而画出.对点训练2(1)利用斜二测画法画平面内一个ABC的直
8、观图得到的图形是ABC,那么ABC的面积与ABC的面积的比是()A.24B.34C.22D.32(2)(2020黑龙江哈尔滨三中期末)已知一个水平放置的平面四边形ABCD的直观图是面积为2的正方形,则原四边形ABCD的面积为()A.2B.22C.22D.42考点空间几何体的三视图(多考向探究)考向1由空间几何体的直观图识别三视图【例3】(1)(2020湖北武汉模拟)如图是一个正方体,A,B,C为三个顶点,D是棱的中点,则三棱锥A-BCD的主视图、俯视图是(注:选项中的上图为主视图,下图为俯视图)()(2)如图,正方体ABCD-A1B1C1D1中,E为棱BB1的中点,用过点A,E,C1的平面截去
9、该正方体的下半部分,则剩余几何体的主视图(也称正视图)是()思考由直观图识别三视图时应注意什么问题?考向2由空间几何体的三视图还原直观图【例4】(1)(2020北京西城一模)某四棱锥的三视图如图所示,记S为此棱锥所有棱的长度的集合,则()A.22S,且23SB.22S,且23SC.22S,且23SD.22S,且23S(2)(2020全国2,理7)右图是一个多面体的三视图,这个多面体某条棱的一个端点在主视图中对应的点为M,在俯视图中对应的点为N,则该端点在左视图中对应的点为()A.EB.FC.GD.H思考由三视图还原几何体的直观图基本步骤有哪些?考向3由三视图的两视图推测另一视图【例5】已知一三
10、棱锥的俯视图与左视图如图所示,俯视图是边长为2的正三角形,左视图是有一条直角边为2的直角三角形,则该三棱锥的主视图可能为()思考如何由三视图的两视图推测另一视图?解题心得1.由几何体的直观图求三视图.注意主视图、左视图和俯视图的观察方向,注意看到的部分用实线表示,看不到的部分用虚线表示.2.由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.3.由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,看看给出的部分三视图是否
11、符合.对点训练3(1)一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的主视图时,以zOx平面为投影面,则得到的主视图可以为()(2)(2020安徽高三联考)某多面体的三视图如图所示,该多面体的各个面中有若干个三角形,这些三角形的面积之和为()A.16B.12C.8+42D.8+46(3)某四棱锥的三视图如图所示,则该四棱锥的侧棱与底面所成线面角的最小角的正弦值为()A.1B.22C.23D.13(4)一个锥体的主视图和左视图如图所示,下面选项中,不可能是该锥体的俯视图的是()1.要掌握棱柱、棱锥的结构特
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-240684.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
六年级下册语文阅读课件-2.古诗两首l西师大版 (共10张PPT).ppt
