2022届高中数学 微专题61 三视图——几何体的体积问题练习(含解析).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022届高中数学 微专题61 三视图几何体的体积问题练习含解析 2022 高中数学 专题 61 视图 几何体 体积 问题 练习 解析
- 资源描述:
-
1、微专题61 三视图几何体的体积问题一、基础知识:1、常见几何体的体积公式:(底面积,高)(1)柱体:(2)锥体: (3)台体:,其中为上底面面积,为下底面面积(4)球: 2、求几何体体积要注意的几点(1)对于多面体和旋转体:一方面要判定几何体的类型(柱,锥,台),另一方面要看好该几何体摆放的位置是否是底面着地。对于摆放“规矩”的几何体(底面着地),通常只需通过俯视图看底面面积,正视图(或侧视图)确定高,即可求出体积。(2)对于组合体,首先要判断是由哪些简单几何体组成的,或是以哪个几何体为基础切掉了一部分。然后再寻找相关要素(3)在三视图中,每个图各条线段的长度不会一一给出,但可通过三个图之间的
2、联系进行推断,推断的口诀为“长对正,高平齐,宽相等”,即正视图的左右间距与俯视图的左右间距相等,正视图的上下间距与侧视图的上下间距相等, 侧视图的左右间距与俯视图的上下间距相等。二、典型例题:例1:已知一个几何体的三视图如图所示,则该几何体的体积为_思路:从正视图,侧视图可判断出几何体与锥体相关(带尖儿),从俯视图中可看出并非圆锥和棱锥,而是两者的一个组合体(一半圆锥 三棱锥),所以,锥体的高计算可得(利用正视图),底面积半圆的半径为,三角形底边为,高为(俯视图看出),所以,则,所以答案:例2:已知一棱锥的三视图如图所示,其中侧视图和俯视图都是等腰直角三角形,正视图为直角梯形,则该棱锥的体积为
3、 .思路:观察可发现这个棱锥是将一个侧面摆在地面上,而棱锥的真正底面体现在正视图(梯形)中,所以,而棱锥的高为侧视图的左右间距,即,所以 答案: 例3:若某几何体的三视图如图所示,则此几何体的体积是_思路:该几何体可拆为两个四棱柱,这两个四棱柱的高均为4(俯视图得到),其中一个四棱柱底面为正方形,边长为2(正视图得到),所以,另一个四棱柱底面为梯形,上下底分别为,所以,。故几何体的体积为 答案: 例4:如下图是一个组合几何体的三视图,则该几何体的体积是_思路:从三视图中观察可得该组合体是由一个圆柱与一个躺倒的三棱锥拼接而成,对于圆柱可得其底面半径为(正视图),高为(正视图),所以,而棱柱底面为
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
