2022届高考数学理北师大版一轮复习训练:9-6 利用空间向量讨论平行与垂直 WORD版含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022届高考数学理北师大版一轮复习训练:9-6 利用空间向量讨论平行与垂直 WORD版含解析 2022 高考 学理 北师大 一轮 复习 训练 利用 空间 向量 讨论 平行 垂直 WORD 解析
- 资源描述:
-
1、温馨提示: 此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。核心考点精准研析考点一利用空间向量证明空间的平行问题1.以下四组向量是平面, 的法向量,则能判断,平行的是()a=(1,2,1),b=(1,-2,3)a=(8,4,-6),b=(4,2,-3)a=(0,1,-1),b=(0,-3,3)a=(18,19,20),b=(1,-2,1)A.B.C.D.2.如图所示,在正方体ABCD-A1B1C1D1中,棱长为a,M,N分别为A1B和AC上的点,A1M=AN=,则MN与平面BB1C1C的位置关系是()A.相交B.平行C.垂直D.不
2、能确定3.如图,正方形ABCD与矩形ACEF所在平面互相垂直,AB=,AF=1,M在EF上,且AM平面BDE,则M点的坐标为()A.(1,1,1) B.,1C.,1 D.,14.平面的法向量u=(x,1,-2),平面的法向量v=-1,y,已知,则x+y=_.【解析】1.选B.因为在中a=2b,所以ab,所以,-3a=b,所以,而a不平行于b,所以不平行于,所以只有能判断,平行.2.选B.分别以C1B1,C1D1,C1C所在直线为x,y,z轴,建立空间直角坐标系.因为A1M=AN=a,所以M,N.所以=.又C1(0,0,0),D1(0,a,0),所以=(0,a,0).所以=0.所以.因为是平面B
3、B1C1C的法向量,且MN平面BB1C1C,所以MN平面BB1C1C.3.选C.建系如图,则A(,0),B(0,0),D(,0,0),E(0,0,1),设M(a,a,1),则=(a-,a-,1),可求出平面BDE的一个法向量n=(1,1,),因为AM平面BDE,所以n=0,可得a=,M的坐标为,1.4.因为,所以vu,所以=,所以所以x+y=.答案:1.证明线面平行的常用方法:(1)证明直线的方向向量与平面内的两个不共线的向量共面.(2)证明直线的方向向量与平面内的一个向量平行.(3)证明直线的方向向量与平面的法向量垂直.2.证明面面平行常用的方法:(1)利用上述方法证明平面内的两个不共线向量
4、都平行于另一个平面.(2)证明两个平面的法向量平行.(3)证明一个平面的法向量也是另一个平面的法向量.秒杀绝招结合线面平行的性质定理解T3:设AC与BD相交于O点,连接OE,因为AM平面BDE,且AM平面ACEF,平面ACEF平面BDE=OE,所以AMEO,又O是正方形ABCD对角线的交点,所以M为线段EF的中点.在空间直角坐标系中,E(0,0,1),F(,1).由中点坐标公式,知点M的坐标为,1.考点二利用空间向量证明空间的垂直问题命题精解读1.考什么:(1)考查利用空间向量证明线面、面面垂直问题.(2)考查直观想象与逻辑推理的核心素养.2.怎么考:与空间图形中与垂直有关的定理结合考查利用空
5、间向量证明空间的垂直问题.3.新趋势:以柱、锥、台体为载体,与证明空间角综合命题.学霸好方法1.证明线面平行和垂直问题,可以用几何法,也可以用向量法.用向量法的关键在于构造向量,再用共线向量定理或共面向量定理及两向量垂直的判定定理.若能建立空间直角坐标系,其证法较为灵活方便.2.交汇问题: 一般先证明线面、面面垂直,再求线面角或二面角.证明线面垂直【典例】如图所示,在四棱锥P-ABCD中,PA底面ABCD,ABAD,ACCD,ABC=60,PA=AB=BC,E是PC的中点.世纪金榜导学号证明:(1)AECD.(2)PD平面ABE.【证明】AB,AD,AP两两垂直,建立如图所示的空间直角坐标系,
6、设PA=AB=BC=1,则P(0,0,1).(1)因为ABC=60,所以ABC为正三角形,所以C,0,E,.设D(0,y,0),由ACCD,得 =0,即y=,则D0,0,所以=-,0.又 =,所以 =-+0=0,所以,即AECD.(2)方法一:因为P(0,0,1),所以=0,-1.又 =0+(-1)=0,所以,即PDAE.因为=(1,0,0),所以 =0.所以PDAB,又ABAE=A,所以PD平面AEB.方法二:=(1,0,0),=,设平面ABE的一个法向量为n=(x,y,z),则令y=2,则z=-,所以n=(0,2,-).因为=0,-1,显然=n.因为n,所以平面ABE,即PD平面ABE.向
7、量法证明线面垂直的常见思路有哪些?提示:(1)将线面垂直的判定定理用向量表示.(2)证明直线的方向向量与平面的法向量共线.证明面面垂直【典例】如图,在三棱锥P-ABC中,AB=AC,D为BC的中点,PO平面ABC,垂足O落在线段AD上.已知BC=8,PO=4,AO=3,OD=2.世纪金榜导学号(1)证明:APBC.(2)若点M是线段AP上一点,且AM=3.试证明平面AMC平面BMC.【证明】(1)如图所示,以O为坐标原点,以射线OP为z轴的正半轴建立空间直角坐标系.则O(0,0,0),A(0,-3,0),B(4,2,0),C(-4,2,0),P(0,0,4).于是=(0,3,4),=(-8,0
8、,0),所以=(0,3,4)(-8,0,0)=0,所以,即APBC.(2)由(1)知AP=5,又AM=3,且点M在线段AP上,所以=0,又=(-8,0,0),=(-4,5,0),=(-4,-5,0),所以=+=-4,-,则=(0,3,4)-4,-,=0,所以,即APBM,又根据(1)的结论知APBC,且BMBC=B,所以AP平面BMC,于是AM平面BMC.又AM平面AMC,故平面AMC平面BMC.向量法证明面面垂直的常见思路有哪些?提示:(1)利用面面垂直的判定定理,证明一个平面内的一条直线的方向向量为另一个平面的法向量.(2)证明两平面的法向量互相垂直.如图,在底面是矩形的四棱锥P-ABCD
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-248379.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
