2023届新高考数学专题复习 专题41 概率统计与函数、不等式的综合(学生版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023届新高考数学专题复习 专题41 概率统计与函数、不等式的综合学生版 2023 新高 数学 专题 复习 41 概率 统计 函数 不等式 综合 学生
- 资源描述:
-
1、专题41 概率统计与函数、不等式的综合一、题型选讲题型一 、概率与函数的交汇例1、(2020届浙江省之江教育评价联盟高三第二次联考)设,随机变量的分布列是:01则当在内增大时( )A增大B减小C先增大后减小D先减小后增大例2、【2018年高考全国卷理数】某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为,且各件产品是否为不合格品相互独立(1)记20件产品中恰有2件不合格品的概率为,求的最大值点(2)现对一箱产品检验了2
2、0件,结果恰有2件不合格品,以(1)中确定的作为的值已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为,求;(ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?例3、(2020届山东省日照市高三上期末联考)某公司准备投产一种新产品,经测算,已知每年生产万件的该种产品所需要的总成本(万元),依据产品尺寸,产品的品质可能出现优、中、差三种情况,随机抽取了1000件产品测量尺寸,尺寸分别在,(单位:)中,经统计得到的频率分布直方图如图所示.产品的品质
3、情况和相应的价格(元/件)与年产量之间的函数关系如下表所示.产品品质立品尺寸的范围价格与产量的函数关系式优中差以频率作为概率解决如下问题:(1)求实数的值;(2)当产量确定时,设不同品质的产品价格为随机变量,求随机变量的分布列;(3)估计当年产量为何值时,该公司年利润最大,并求出最大值.例4、(广东省2021届高三上学期综合能力测试)随着智能手机的普及,手机计步软件迅速流行开来,这类软件能自动记载用户每日健步的步数某市大型企业为了了解其员工每日健步走的情况,从正常上班的员工中随机抽取了2000人,统计了他们手机计步软件上同一天健步的步数(单位:千步,假设每天健步的步数均在3千步至21千步之间)
4、将样本数据分成3,5),5,7),7,9),9,11),11,13),13,15),15,17),17,19),19,21九组,绘制成如图所示的频率分布直方图,并用样本的频率分布估计总体的频率分布(1)求图中a的值;(2)设该企业正常上班的员工健步步数(单位:千步)近似服从正态分布,其中近似为样本的平均数(各区间数据用中点值近似计算),取,若该企业恰有10万人正常上班的员工,试估计这些员工中日健步步数Z位于区间4.88,15.8范围内的人数;(3)现从该企业员工中随机抽取20人,其中有k名员工的日健步步数在13千步至15千步内的概率为,其中,当最大时,求k的值,参考数据:若随机变量服从正态分布
5、,则,.题型二、概率与数列的交汇例5、【2019年高考全国卷理数】为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验试验方案如下:每一轮选取两只白鼠对药效进行对比试验对于两只白鼠,随机选一只施以甲药,另一只施以乙药一轮的治疗结果得出后,再安排下一轮试验当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得分;若都治愈或都未治愈则两种药均得0分甲、乙两种药的治愈率分别记
6、为和,一轮试验中甲药的得分记为X(1)求的分布列;(2)若甲药、乙药在试验开始时都赋予4分,表示“甲药的累计得分为时,最终认为甲药比乙药更有效”的概率,则,其中,假设,(i)证明:为等比数列;(ii)求,并根据的值解释这种试验方案的合理性例6、(华南师大附中2021届高三综合测试)足球运动被誉为“世界第一运动”深受青少年的喜爱(I)为推广足球运动,某学校成立了足球社团,由于报名人数较多,需对报名者进行“点球测试”来决定是否录取,规则如下:踢点球一次,若踢进,则被录取;若没踢进,则继续踢,直到踢进为止,但是每人最多踢点球3次下表是某同学6次的训练数据,以这150个点球中的进球频率代表其单次点球踢
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-253593.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
