河北省鸡泽县第一中学2021届高三数学上学期第一次月考试题(含解析).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 河北省鸡泽县第一中学2021 数学上学期第一次月考试题 河北省鸡泽县第一中学 2021 河北省鸡泽县第一中学 上学期第一次月考数学试题 上学期第一次月考 河北省鸡泽县第 第一次月考数学
- 资源描述:
-
1、河北省鸡泽县第一中学2021届高三数学上学期第一次月考试题(含解析)一、项选择题:本大题共12小题,每小题5分,共600分. 1. 已知集合,则=A. B. C. D. 【答案】C【解析】【分析】本题考查集合交集和一元二次不等式的解法,渗透了数学运算素养采取数轴法,利用数形结合的思想解题【详解】由题意得,则故选C【点睛】不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分2. 已知复数(i为虚数单位),则z的实部为( )A. B. C. D. 【答案】B【解析】【分析】直接利用复数代数形式的乘除运算化简得答案【详解】解:,的实部为故选:【点睛】本题考查了复数代数形式
2、的乘除运算,考查了复数的基本概念,属于基础题3. 设向量,且,则( )A. 3B. 2C. D. 【答案】A【解析】【分析】由题意得到,利用向量垂直的坐标形式得到.【详解】由题,得,由,从而,解得.故选:A.【点睛】本题考查平面向量的坐标运算,考查向量垂直的坐标形式,考查计算能力,属于基础题.4. 在中,若 ,则=( )A. 1B. 2 C. 3D. 4【答案】A【解析】余弦定理将各值代入得解得或(舍去)选A.5. 已知双曲线的左焦点为,离心率为.若经过和两点的直线平行于双曲线的一条渐近线,则双曲线的方程为A. B. C. D. 【答案】B【解析】由题意得 ,选B.【考点】 双曲线的标准方程【
3、名师点睛】利用待定系数法求圆锥曲线方程是高考常见题型,求双曲线方程最基础的方法就是依据题目的条件列出关于的方程,解方程组求出,另外求双曲线方程要注意巧设双曲线(1)双曲线过两点可设为,(2)与共渐近线的双曲线可设为,(3)等轴双曲线可设为等,均为待定系数法求标准方程.6. 中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)的一种,现有十二生肖的吉物各一个,甲、乙、丙三位同学依次选一个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、兔、狗和羊,丙同学哪个吉祥物都喜欢,如果让三位同学选取的礼物都满意,那么不同的选法有()A. 50种B. 6
4、0种C. 70种D. 90种【答案】C【解析】【分析】根据题意,按同学甲的选择分2种情况讨论,求出每种情况的选法数目,由加法原理计算可得答案【详解】根据题意,分2种情况讨论:如果同学甲选牛,那么同学乙只能选兔、狗和羊中的一种,丙同学可以从剩下的10种中任意选,选法有种;如果同学甲选马,那么同学乙能选牛、兔、狗和羊中的一种,丙同学可以从剩下的10种中任意选,选法有种,不同的选法共有种,故选C.【点睛】本题主要考查排列、组合的应用,涉及分类计数原理的运用,属于基础题7. 为了研究某班学生的脚长(单位厘米)和身高(单位厘米)的关系,从该班随机抽取名学生,根据测量数据的散点图可以看出与之间有线性相关关
5、系,设其回归直线方程为已知,该班某学生的脚长为,据此估计其身高为( )A. B. C. D. 【答案】C【解析】【详解】由已知,, 故选C.8. 要得到函数的图象,可将的图象向左平移( )A. 个单位B. 个单位C. 个单位D. 个单位【答案】A【解析】【分析】利用辅助角公式化简函数的解析式,然后利用三角函数图象的平移变换规律可得出结论.【详解】,因此,将的图象向左平移可得到函数的图象.故选:A.【点睛】本题考查三角函数图象的平移变换,在平移时要将两个函数的解析式化简,函数名称要保持一致,考查推理能力,属于中等题.9. 已知数列的前项和为,且,则( )A. B. C. D. 【答案】A【解析】
6、由题意得, ,则 ,即 ,故选A.10. 现有四个函数:;的图象(部分)如下,则按照从左到右图象对应的函数序号安排正确的一组是( ) A. B. C. D. 【答案】A【解析】【分析】根据各个函数的奇偶性、函数值的符号,判断函数的图象特征,即可得到【详解】解:为偶函数,它的图象关于轴对称,故第一个图象即是;为奇函数,它的图象关于原点对称,它在上的值为正数,在上的值为负数,故第三个图象满足;为奇函数,当时,故第四个图象满足;,为非奇非偶函数,故它的图象没有对称性,故第二个图象满足,故选A【点睛】本题主要考查函数的图象,函数的奇偶性、函数的值的符号,属于中档题11. 设函数,若互不相等的实数满足,
7、则的取值范围是()A. B. C. D. 【答案】B【解析】【分析】画出函数的图象,不妨令,则结合图象可得,从而可得结果【详解】画出函数的图象如图所示不妨令,则,则结合图象可得,故选B【点睛】数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质12. 已知为常数,函数有两个极值点,(),则( )A. ,B. ,C. ,D. ,【答案】C
8、【解析】 因为 ,令,由题意可得有两个解,即函数有且只有两个零点,即在上的唯一极值不等于0,又由,当时,单调递增,因此至多有一个零点,不符合题意;当时,令,解得,因为,函数单调递增;,函数单调递减,所以是函数的极大值点,则,即,所以,所以,即,故当时,的两个根,且,又,所以,从而可知函数在区间上递减,在区间上递增,在区间上递减,所以,故选C点睛:本题考查了利用导数研究函数单调性以及利用导数研究函数的极值的方法,解答中先求出,由题意可得有两个解,转化为函数有且只有两个零点是解答的关键二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13. 的展开式中的系数是 .(用数
9、字填写答案)【答案】【解析】由题意,二项式展开的通项,令,得,则的系数是.考点:1.二项式定理的展开式应用.14. 函数满足,且在区间上,则的值为_【答案】【解析】分析:先根据函数周期将自变量转化到已知区间,代入对应函数解析式求值,再代入对应函数解析式求结果.详解:由得函数的周期为4,所以因此点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围. 15. 已知为
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
浙江省苍南县勤奋高级中学高中语文公开课课件(语文版)蜀道难.ppt
