新教材2021-2022学年高中人教B版数学选择性必修第二册学案:第4章 4-3-2 独立性检验 WORD版含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新教材2021-2022学年高中人教B版数学选择性必修第二册学案:第4章 4-3-2独立性检验 WORD版含解析 新教材
- 资源描述:
-
1、4.3.2独立性检验学 习 任 务核 心 素 养1通过实例,理解22列联表的统计意义(重点)2通过实例,了解22列联表独立性检验及其应用(难点)1通过22列联表统计意义的学习,体会数学抽象的素养2借助2计算公式进行独立性检验,培养数学运算和数据分析的素养一则“双黄连口服液可抑制新冠病毒”消息热传后,引起部分市民抢购人民日报官微称,抑制不等于预防和治疗,勿自行服用上海专家称是否有效还在研究中问题:如何判断其有效?如何收集数据?收集哪些数据?提示略知识点122列联表(1)定义:如果随机事件A与B的样本数据整理成如下的表格形式A总计Bababcdcd总计acbdabcd因为这个表格中,核心数据是中间
2、4个格子,所以这样的表格通常称为22列联表(2)2计算公式:2,其中nabcd拓展:列联表的统计意义记nabcd,则由上表可知:(1)事件A发生的概率可估计为P(A);(2)事件B发生的概率可估计为P(B);(3)事件AB发生的概率可估计为P(AB)其他事件的概率类似可求1下面是22列联表y1y2总计x1a2173x222527总计b46100则表中a_,b_5254a732152,ba252254知识点2独立性检验任意给定一个(称为显著性水平,通常取为0.05,0.01等),可以找到满足条件P(2k)的数k(称为显著性水平对应的分位数),就称在犯错误的概率不超过的前提下,可以认为A与B不独立
3、(也称为A与B有关);或说有1的把握认为A与B有关若2k成立,就称不能得到前述结论这一过程通常称为独立性检验提醒:(1)2k的统计意义A与B独立时,也称为A与B无关当2k成立时,一般不直接说A与B无关也就是说,独立性检验通常得到的结果,或者是有1的把握认为A与B有关,或者没有1的把握认为A与B有关(2)常用的显著性水平以及对应的分位数k对照表P(2k)0.10.050.010.0050.001k2.7063.8416.6357.87910.8282下列选项中,哪一个2的值可以有95%以上的把握认为“A与B有关系”()A22.700B22.710C23.765 D25.014D5.0143.84
4、1,故D正确3若由一个22列联表中的数据计算得24.013,那么在犯错误的概率不超过_的前提下认为两个变量之间有关系5%查阅2表知有95%的把握认为两个变量之间有关系,故在犯错误的概率不超过5%的前提下,认为两个变量之间有关系 类型1由2进行独立性检验【例1】在500人身上试验某种血清预防感冒的作用,把他们一年中的感冒记录与另外500名未用血清的人的感冒记录作比较,结果如表所示问:能否在犯错误的概率不超过1%的前提下认为该种血清能起到预防感冒的作用 未感冒感冒总计使用血清258242500未使用血清216284500 总计4745261 000思路点拨独立性检验可以通过22列联表计算2的值,然
5、后和临界值对照作出判断解假设感冒与是否使用该种血清没有关系由列联表中的数据,求得27.07527.0756.635,P(26.635)0.01,故我们在犯错误的概率不超过1%的前提下,即有99%的把握认为该种血清能起到预防感冒的作用独立性检验的具体做法1根据实际问题的需要确定允许推断“事件A与B有关系”犯错误的概率的上界,然后查表确定临界值k2利用公式2计算随机变量23如果2k推断“X与Y有关系”这种推断犯错误的概率不超过;否则,就认为在犯错误的概率不超过的前提下不能推断“X与Y有关系”,或者在样本数据中没有发现足够的证据支持结论“X与Y有关系”1为了调查胃病是否与生活规律有关,在某地对540
6、名40岁以上的人的调查结果如下:患胃病未患胃病总计生活不规律60260320生活有规律20200220总计80460540根据以上数据,能否有99%的把握判断40岁以上的人患胃病与生活规律有关?解由公式得29.6389.6386.635,有99%的把握说40岁以上的人患胃病与生活是否有规律有关,即生活不规律的人易患胃病 类型2独立性检验的综合应用1利用2进行独立性检验,估计值的准确度与样本容量有关吗?提示利用2进行独立性检验,可以对推断的正确性的概率作出估计,样本容量n越大,这个估计值越准确,如果抽取的样本容量很小,那么利用2进行独立性检验的结果就不具有可靠性2在2运算后,得到2的值为29.7
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-254668.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
2022年中考语文现代文阅读分类精讲精品课件.ppt
