分享
分享赚钱 收藏 举报 版权申诉 / 6

类型河南省2019年中考数学总复习第七章图形的变化微专项.doc

  • 上传人:a****
  • 文档编号:257063
  • 上传时间:2025-11-22
  • 格式:DOC
  • 页数:6
  • 大小:786.50KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    河南省 2019 年中 数学 复习 第七 图形 变化 专项
    资源描述:

    1、路径长最值问题常见模型结构示例应用的原理处理方法基本思路转化原则轴对称最值模型如图,定点A,B在定直线l的同侧,在定直线l上找一动点P,使PA+PB的值最小.两点之间,线段最短.作任意一定点关于直线l的对称点,然后连接对称点与另一定点,根据两点之间线段最短,得出PA+PB的最小值.尽量减少变量,向定点、定线段、定图形“靠拢”;使用同一变量表达所求目标.如图,定点A,B在定直线l的异侧,在定直线l上找一点P,使|PA-PB|的值最大.三角形的三边关系作任意一定点关于直线l的对称点,然后作过该对称点和另一定点的直线,交直线l于点P,根据三角形中两边之差小于第三边,可得|PA-PB|的最大值.折叠求

    2、最值模型如图,点N为定点,点M为动点,折叠图形后.求AB的最小值;求点A到BC距离的最小值.平面内的点与圆上距离最大和最小的点均在该点与圆心连线所在的直线上;垂线段最短.以点N为圆心、AN的长为半径作圆.连接BN交N于一点,当点A与该交点重合时,AB取最小值;过点N作BC的垂线,交N于一点,当点A与该交点重合时,点A到BC的距离最小.突破点1轴对称最值模型 如图,在平面直角坐标系中,AOB的边OB与x轴正半轴重合,点P是OA上的一动点,点N(3,0)在OB上,点M是ON的中点,AOB=30,要使PM+PN的值最小,则点P的坐标为.思路分析定点M,N在定直线OA同侧,求PM+PN的最小值时,可作

    3、点N关于定直线OA的对称点N,再连接MN,根据两点之间线段最短,得到点P,M,N共线时,PM+PN的值最小,据此进行求解.突破点2折叠求最值模型如图,在RtABC中,C=90,AC=6,BC=8,点F在边AC上,且CF=2,点E为边BC上的动点,将CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值为. 思路分析在该问题中,先找到定点F,再以点F为圆心、CF的长为半径作圆,则点P在该圆上运动,求点P到AB距离的最小值,即是求F上的点到AB的最小距离,过点F作AB的垂线,交F于一点,当点P与该点重合时,点P到AB的距离最小,据此求解即可.1.如图,在ABC中,AB=AC,AD,CE是

    4、ABC的两条中线,点P是AD上的一个动点,则下列线段的长等于BP+EP最小值的是()A.BCB.CEC.AD D.AC2.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),点D是OA的中点,点E在AB上,当CDE的周长最小时,点E的坐标为.(第2题)(第3题)3.如图,AOB=45,点P是AOB内一点,PO=5,点Q,R分别是OA,OB上的动点,则PQR周长的最小值为.4.如图,菱形ABCD的边长为2,DAB=60,点E为BC的中点,点P是对角线AC上的动点,则PBE周长的最小值为.(第4题)(第5题)5.如图,在平面直角坐标系中,点A(1,5),B(3,-1),点M在x轴

    5、上运动,当AM-BM的值最大时,点M的坐标为.6.在平面直角坐标系中,抛物线y=x2-2x经过点A(4,0),点C的坐标为(1,-3),点D是抛物线对称轴上一动点,当|AD-CD|的值最大时,点D的坐标为.7.如图,在边长为2的菱形ABCD中,A=60,点M是AD边的中点,点N是AB边上一动点,将AMN沿MN所在的直线翻折得到AMN,连接AC,则AC的最小值为.(第7题)(第8题)8.如图,CD是O的直径,CD=4,ACD=20,点B为弧AD 的中点,点P是直径CD 上的一个动点,则PA+PB的最小值为. 9.如图,抛物线y=-x2+x-2与x轴交于点A,B两点,与y轴交于点C,抛物线的顶点为

    6、D,在y轴上是否存在一点S,使得SD-SB的值最大?若存在,求出点S的坐标,并求出SD-SB的最大值;若不存在,请说明理由.参考答案高分突破微专项3路径长最值问题例1(,)如图,作点N关于OA的对称点N,连接NM交OA于点P,此时PM+PN的值最小.OA垂直平分NN,AOB=30,ON=ON,NON=2AON=60,NON是等边三角形.点M是ON的中点,点N(3,0),NMON,ON=3,OM=ON=,PM=OMtanAON=,P(,).即要使PM+PN的值最小,点P的坐标为(,).例2当点E在BC上运动时,PF的长固定不变,即PF=CF=2.故点P在以点F为圆心、以2为半径的圆上运动.如图,

    7、过点F作FHAB交F于点P,垂足为点H,此时PH最短,则AFHABC,=.由已知得AF=4,AB=10,=,即FH=,PH=FH-FP=-2=.故点P到AB距离的最小值为.强化训练1.BAB=AC,AD是中线,ADBC,点B,C关于直线AD对称.连接CE交AD于点F,当点P与点F重合时,BP+EP的值最小,最小值为CE的长.故选B.2.(3,)点B的坐标为(3,4),OA=3,OC=4,C(0,4).点D是OA的中点,OD=AD=.如图,作点D关于直线AB的对称点F,则AF=AD=,故点F的坐标为(,0).根据轴对称的性质,可知直线FC与AB的交点就是使得CDE的周长最小的点E.利用待定系数法

    8、可得直线CF的解析式为y=-x+4,当x=3时,y=,故点E的坐标为(3,).3.5如图,分别作点P关于OA,OB的对称点M,N,连接OM,ON,MN,MN交OA,OB于点Q,R,此时PQR周长最小,为MN的长.由轴对称的性质可得,OM=ON=OP=5,MOA=POA,NOB=POB,则MON=2AOB=245=90.在RtMON中,MN=5,即PQR周长的最小值等于5.4.+1如图,连接DE,交AC于点F,连接PD,易得PB=PD,PD+PEDE,当点P与点F重合时,PD+PE的值最小,且最小值为DE的长,易得DE=,故PB+PE的最小值为,易得BE=1,故PBE周长的最小值为+1.5.(,

    9、0)如图,作点B关于x轴的对称点B,连接AB并延长与x轴交于点N,此时AN-BN=AN-BN=AB,MA-MB=MA-MBAB.点B和点B(3,-1)关于x轴对称,B(3,1).设直线AB的解析式为y=kx+b,将A(1,5),B(3,1)分别代入,得解得故直线AB的解析式为y=-2x+7,令y=0,解得x=,当AM-BM的值最大时,点M的坐标为(,0).6.(2,-6)易知抛物线的对称轴为直线x=2.如图,作点C关于直线x=2的对称点C(3,-3),作直线AC,与直线x=2交于点D.设直线AC的解析式为y=kx+b,将A(4,0),C(3,-3)分别代入,得解得故直线AC的解析式为y=3x-

    10、12,当x=2时,y=-6,故点D的坐标为(2,-6).7.-1易知MA是定值,且MA=1,AC的长度取最小值时,点A在MC上.过点M作MFDC交CD的延长线于点F,在边长为2的菱形ABCD中,点M为AD的中点,A=60,CD=AD=2,DM=AD=1,FDM=60,FD=DMcos 60=,FM=DMsin 60=,FC=FD+DC=,MC=,AC=MC-MA=-1.故AC的最小值为-1.8.2如图,作点A关于直线CD的对称点M,则点M在O上,连接MB交CD于点P,则此时PA+PB取最小值,为BM.连接OB,OM.ACD=20,点B为弧AD 的中点,BOD=20,DOM=40,BOM=60.

    11、OB=OM,BOM是等边三角形,BM=OB=CD=2,即PA+PB的最小值为2. 9.如图,作直线BD交y轴于点S,此时SD-SB有最大值,最大值等于BD的长.y=-x2+x-2=-(x-)2+,点D的坐标为(,).将y=0代入y=-x2+x-2,得-x2+x-2=0,解得x1=1,x2=4,点B的坐标为(1,0),点A的坐标为(4,0).设直线BD的解析式为y=kx+b,将B(1,0),D(,)分别代入,得解得故直线BD的解析式为y=x-,点S的坐标为(0,-).过点D作DEx轴于点E,则BE=,DE=.在RtBDE中,BD=.故在y轴上存在一点S,使得SD-SB的值最大,最大值为,此时点S的坐标为(0,-).

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:河南省2019年中考数学总复习第七章图形的变化微专项.doc
    链接地址:https://www.ketangku.com/wenku/file-257063.html
    相关资源 更多
  • 人教版数学三年级(上册)期末综合素养提升题【各地真题】.docx人教版数学三年级(上册)期末综合素养提升题【各地真题】.docx
  • 人教版数学三年级(上册)期末综合素养提升题【原创题】.docx人教版数学三年级(上册)期末综合素养提升题【原创题】.docx
  • 江苏省南通市通州区2012年暑假补充练习 高二数学单元检测十二:综合试卷(2)(市中马进).doc江苏省南通市通州区2012年暑假补充练习 高二数学单元检测十二:综合试卷(2)(市中马进).doc
  • 人教版数学三年级(上册)期末综合素养提升题【历年真题】.docx人教版数学三年级(上册)期末综合素养提升题【历年真题】.docx
  • 2023年苏教版四年级数学下册第三单元测试卷及答案一.doc2023年苏教版四年级数学下册第三单元测试卷及答案一.doc
  • 江苏省南通市通州区2012年暑假补充练习 高二数学单元检测五:三角与向量(刘桥汤建南).doc江苏省南通市通州区2012年暑假补充练习 高二数学单元检测五:三角与向量(刘桥汤建南).doc
  • 人教版数学三年级(上册)期末综合素养提升题【典型题】.docx人教版数学三年级(上册)期末综合素养提升题【典型题】.docx
  • 2023年苏教版四年级下册数学试卷及答案.doc2023年苏教版四年级下册数学试卷及答案.doc
  • 江苏省南通市通州区2012年暑假补充练习 高二数学单元检测九:直线与圆(三余曹均).doc江苏省南通市通州区2012年暑假补充练习 高二数学单元检测九:直线与圆(三余曹均).doc
  • 人教版数学三年级(上册)期末综合素养提升题【典优】.docx人教版数学三年级(上册)期末综合素养提升题【典优】.docx
  • 2023年苏教版六年级数学下册第四单元测试卷及答案一.doc2023年苏教版六年级数学下册第四单元测试卷及答案一.doc
  • 江苏省南通市通州区2012年暑假补充练习 高二数学单元检测一:集合与逻辑(平潮中学钱春林).doc江苏省南通市通州区2012年暑假补充练习 高二数学单元检测一:集合与逻辑(平潮中学钱春林).doc
  • 人教版数学三年级(上册)期末综合素养提升题【全国通用】.docx人教版数学三年级(上册)期末综合素养提升题【全国通用】.docx
  • 正太萝莉教你数学:一顿饭吃完就知啥是“映射”.doc正太萝莉教你数学:一顿饭吃完就知啥是“映射”.doc
  • 江苏省南通市通州区2012年暑假自主学习 高一数学单元检测四:不等式与线性规划(平潮金志军).doc江苏省南通市通州区2012年暑假自主学习 高一数学单元检测四:不等式与线性规划(平潮金志军).doc
  • 2023年苏教版五年级数学下册第六单元测试卷及答案一.doc2023年苏教版五年级数学下册第六单元测试卷及答案一.doc
  • 人教版数学三年级(上册)期末综合素养提升题【全优】.docx人教版数学三年级(上册)期末综合素养提升题【全优】.docx
  • 江苏省南通市通州区2012年暑假自主学习 高一数学单元检测十:函数(2)(三余陈晓波).doc江苏省南通市通州区2012年暑假自主学习 高一数学单元检测十:函数(2)(三余陈晓波).doc
  • 2023年苏教版五年级数学下册第一单元测试卷及答案一.doc2023年苏教版五年级数学下册第一单元测试卷及答案一.doc
  • 江苏省南通市通州区2012年暑假自主学习 高一数学单元检测十一:综合试卷1(市中王新星).doc江苏省南通市通州区2012年暑假自主学习 高一数学单元检测十一:综合试卷1(市中王新星).doc
  • 2023年苏教版三年级数学下册第八单元测试卷及答案一.doc2023年苏教版三年级数学下册第八单元测试卷及答案一.doc
  • 人教版数学三年级(上册)期末综合素养提升题【a卷】.docx人教版数学三年级(上册)期末综合素养提升题【a卷】.docx
  • 2023年苏教版三年级数学下册期末测试卷及答案一.doc2023年苏教版三年级数学下册期末测试卷及答案一.doc
  • 人教版数学三年级(上册)期末综合素养提升题ab卷.docx人教版数学三年级(上册)期末综合素养提升题ab卷.docx
  • 江苏省南通市通州区2012届高三回归课本专项检测(数学).doc江苏省南通市通州区2012届高三回归课本专项检测(数学).doc
  • 人教版数学三年级(上册)期末综合素养提升题a4版打印.docx人教版数学三年级(上册)期末综合素养提升题a4版打印.docx
  • 2023年苏教版一年级数学下册第六单元测试卷附答案一.doc2023年苏教版一年级数学下册第六单元测试卷附答案一.doc
  • 人教版数学三年级(上册)期末综合素养提升题a4版可打印.docx人教版数学三年级(上册)期末综合素养提升题a4版可打印.docx
  • 2023年苏教版一年级数学下册期末测试卷及答案一.doc2023年苏教版一年级数学下册期末测试卷及答案一.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1