新教材2022版新高考数学人教B版一轮复习学案:第4章 第6节 正弦定理与余弦定理 WORD版含解析.DOC
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新教材2022版新高考数学人教B版一轮复习学案:第4章 第6节 正弦定理与余弦定理 WORD版含解析 新教材 2022 新高 学人 一轮 复习 正弦 定理 余弦 WORD 解析
- 资源描述:
-
1、第6节正弦定理与余弦定理一、教材概念结论性质重现1正弦定理在一个三角形中,各边的长和它所对角的正弦的比相等,即2R,其中R是三角形外接圆的半径正弦定理的变形公式:(1)a2Rsin A,b2Rsin B,c2Rsin C.(2)sin A,sin B,sin C.(3)abcsin Asin Bsin C.若已知两边和其中一边的对角,解三角形时,可用正弦定理在根据另一边所对角的正弦值,确定角的值时,要注意避免增根或漏解,常用的基本方法就是结合“大边对大角,大角对大边”及三角形内角和定理去考虑问题2余弦定理三角形任何一边的平方,等于其他两边的平方和减去这两边与它们夹角余弦的积的2倍即a2b2c2
2、2bccos A,b2a2c22accos B,c2a2b22abcos C.余弦定理的推论:cos A,cos B,cos C.3三角形的面积公式(1)Sah(h表示边a上的高)(2)Sbcsin Aacsin Babsin C.(3)Sr(abc)(r为三角形的内切圆半径)4常用结论在ABC中,常用以下结论:(1)ABC.(2)在三角形中大边对大角,大角对大边(3)任意两边之和大于第三边,任意两边之差小于第三边(4)sin(AB)sin C;cos(AB)cos C;tan(AB)tan C;sin cos ;cos sin .(5)tan Atan Btan Ctan Atan Btan
3、 C.(6)ABabsin Asin Bcos Ac2是ABC为锐角三角形的必要不充分条件( )(4)在ABC中,若sin Asin Bcos Acos B,则此三角形是钝角三角形( )2ABC的内角A,B,C的对边分别为a,b,c.已知a,c2,cos A,则b()A BC2D3D解析:由余弦定理,得4b222bcos A5,整理得3b28b30,解得b3或b(舍去)故选D.3在ABC中,a,b,c分别为角A,B,C的对边若a2bcos C,则此三角形一定是()A等腰直角三角形B直角三角形C等腰三角形D等腰三角形或直角三角形C解析:在ABC中,因为cos C,所以a2bcos C2b,所以a
4、2a2b2c2,所以bc,所以此三角形一定是等腰三角形4在ABC中,a3,b5,sin A,则sin B()A. B. C.D.1B解析:根据正弦定理,有,得sin B.故选B.5已知a,b,c分别为ABC三个内角A,B,C的对边,a2,A45.若三角形有两解,则边b的取值范围是_(2,2)解析:如图,ABC有两解的充要条件是bsin 452b,解得2b0,所以sin A1,所以A,故ABC为直角三角形若本例条件变为,判断ABC的形状解:由,得,所以sin Acos Acos Bsin B,所以sin 2Asin 2B.因为A,B为ABC的内角,所以2A2B或2A2B,所以AB或AB,所以AB
5、C为等腰三角形或直角三角形1判断三角形形状的常用途径2判断三角形的形状的注意点在判断三角形的形状时,一定要注意三角形的解是否唯一,并注重挖掘隐含条件另外,在变形过程中,要注意角A,B,C的范围对三角函数值的影响在等式变形时,一般两边不要约去公因式,应移项提取公因式,以免漏解1在ABC中,sin2(a,b,c分别为角A,B,C的对边),则ABC的形状为()A直角三角形B等边三角形C等腰三角形或直角三角形D等腰直角三角形A解析:由cos B12sin2得sin2,所以,即cos B.(方法一)由余弦定理得cos B,即a2c2b22a2,所以a2b2c2.所以ABC为直角三角形又无法判断两直角边是
6、否相等故选A.(方法二)由正弦定理得cos B,又sin Asin (BC)sin Bcos Ccos Bsin C,所以cos Bsin Csin Bcos Ccos Bsin C,即sin Bcos C0.又sin B0,所以cos C0.又角C为三角形的内角,所以C,所以ABC为直角三角形又因为无法判断两直角边是否相等故选A.2给出下列命题:若tan Atan B1,则ABC一定是钝角三角形;若sin2Asin2Bsin2C,则ABC一定是直角三角形;若cos(AB)cos(BC)cos(CA)1,则ABC一定是等边三角形其中正确命题的序号为_解析:因为tan Atan B1,且A,B为
7、三角形内角,所以tan A0,tan B0,所以A,B均为锐角又因为tan Ctan(AB)0,所以C为锐角,所以ABC不是钝角三角形,故错误由正弦定理及条件,得a2b2c2,所以ABC一定为直角三角形,故正确由cos(AB)cos(BC)cos(CA)1及A,B,C为三角形内角,可得cos(AB)cos(BC)cos(CA)1,所以ABC.故正确考点3三角形的面积综合性(2020广东化州二模)在ABC中,三个内角A,B,C所对的边为a,b,c.若SABC2,ab6,2cos C,则c()A2B2C4D3B解析:因为1,所以2cos C1,所以C60.若SABC2,则absin C2,所以ab
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-258632.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
