2022版新高考数学一轮总复习学案:第2章 第2节 函数的单调性与最值 WORD版含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022版新高考数学一轮总复习学案:第2章 第2节 函数的单调性与最值 WORD版含解析 2022 新高 数学 一轮 复习 函数 调性 WORD 解析
- 资源描述:
-
1、函数的单调性与最值考试要求1.理解函数的单调性、最大值、最小值及其几何意义.2.会运用基本初等函数的图象分析函数的性质1函数的单调性(1)单调函数的定义类别增函数减函数定义一般地,设函数f(x)的定义域为I,如果对于定义域I上的任意两个自变量的值x1,x2当x1x2时,都有f(x1)f(x2),那么就说函数f(x)是单调递增当x1x2时,都有f(x1)f(x2),那么就说函数f(x)是单调递减图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数yf(x)在区间D上是增函数或减函数,那么就说函数yf(x)在这一区间具有(严格的)单调性,区间D叫做yf(x)的单调区间提
2、醒:(1)单调区间只能用区间表示,不能用不等式或集合表示(2)有多个单调区间应分别写,不能用符号“”连接,也不能用“或”连接,只能用“逗号”或“和”连接2函数的最值前提设函数yf(x)的定义域为I,如果存在实数M满足条件对于任意的xI,都有f(x)M;存在x0I,使得f(x0)M对于任意的xI,都有f(x)M;存在x0I,使得f(x0)M结论M为yf(x)的最大值M为yf(x)的最小值1函数单调性的结论(1)x1,x2D(x1x2),f(x)在D上是增函数;f(x)在D上是减函数(2)对勾函数yx(a0)的单调递增区间为(,和,),单调递减区间为,0)和(0,(3)当f(x),g(x)都是增(
3、减)函数时,f(x)g(x)是增(减)函数(4)若k0,则kf(x)与f(x)单调性相同;若k0,则kf(x)与f(x)的单调性相反(5)函数yf(x)在公共定义域内与y的单调性相反(6)复合函数yf(g(x)的单调性与函数yf(u)和ug(x)的单调性关系是“同增异减”2函数最值存在的两个结论(1)闭区间上的连续函数一定存在最大值和最小值(2)开区间上的“单峰”函数一定存在最大(小)值一、易错易误辨析(正确的打“”,错误的打“”)(1)函数y的单调递减区间是(,0)(0,)()(2)若定义在R上的函数f(x)有f(1)f(3),则函数f(x)在R上为增函数()(3)定义域为1,)的函数yf(
4、x)是增函数,则函数的单调递增区间是1,)()(4)闭区间上的单调函数,其最值一定在区间端点取到()答案(1)(2)(3)(4)二、教材习题衍生1(多选)如果函数f(x)在a,b上单调递增,则对于任意的x1,x2a,b(x1x2),下列结论中正确的是()A0B(x1x2)f(x1)f(x2)0Cf(a)f(x1)f(x2)f(b)Df(x1)f(x2)ABD由函数单调性的定义可知,若函数yf(x)在给定的区间上单调递增,则x1x2与f(x1)f(x2)同号,由此可知,选项A,B正确;对于C,若x1x2,则f(x1)f(x2),故C不正确;对于D,因为f(x)在区间a,b上单调,且x1x2,所以
5、f(x1)f(x2),故D正确2函数f(x)x22x的单调递增区间是_1,)f(x)x22x(x1)21,因此函数f(x)的单调递增区间为1,)3若函数y(2k1)xb在R上是减函数,则k的取值范围是_因为函数y(2k1)xb在R上是减函数,所以2k10,即k.4已知函数f(x),x2,6,则f(x)的最大值为_,最小值为_2易知函数f(x)在x2,6上为减函数,故f(x)maxf(2)2,f(x)minf(6). 考点一求函数的单调区间 1.求函数单调区间的常用方法2求复合函数单调区间的一般步骤(1)求函数的定义域(定义域先行)(2)求简单函数的单调区间(3)求复合函数的单调区间,其依据是“
6、同增异减”典例1求下列函数的单调区间:(1)f(x)x22|x|1;(2)f(x);(3)f(x).解(1)由于y即y画出函数图象如图所示由图象可知,函数的单调递增区间为(,1和0,1,单调递减区间为1,0和1,)(2)由x10得x1,即函数f(x)的定义域为(,1)(1,),f(x)2,其图象如图所示由图象知,函数f(x)的单调递增区间为(,1)和(1,)(3)由x2x60得x3或x2,即函数f(x)的定义域为(,32,),令ux2x6,则y可以看作是由y与ux2x6复合而成的函数易知ux2x6在(,3上是减函数,在2,)上是增函数,而y在0,)上是增函数,所以y的单调递减区间为(,3,单调
7、递增区间为2,)母题变迁若把本例(1)函数解析式改为f(x)|x24x3|,试求函数f(x)的单调区间解先作出函数yx24x3的图象,由于绝对值的作用,把x轴下方的部分翻折到上方,可得函数y|x24x3|的图象如图所示由图可知f(x)在(,1和2,3上为减函数,在1,2和3,)上为增函数,故f(x)的单调递增区间为1,2,3,),单调递减区间为(,1,2,3点评:(1)求函数的单调区间,应先求定义域,在定义域内求单调区间(2)重视函数f(x)(ac0)的图象与性质(对称中心、单调性、渐近线)1函数f(x)|x2|x的单调递减区间是()A1,2B1,0C(0,2D2,)A由题意得,f(x)当x2
8、时,2,)是函数f(x)的单调递增区间;当x2时,(,1是函数f(x)的单调递增区间,1,2是函数f(x)的单调递减区间2函数f(x)的单调递减区间为_(,1)和(1,)由x10得x1,即函数f(x)的定义域为(,1)(1,),又f(x)1,其图象如图所示,由图象知,函数f(x)的单调递减区间为(,1)和(1,)3函数f(x)的单调递增区间为_1,1)由32xx20得3x1,即函数f(x)的定义域为(3,1),令u32xx2,则u(x1)24,易知u在(3,1上是增函数,在1,1)上是减函数,而y在(0,)上是减函数,则f(x)的单调递增区间为1,1) 考点二函数单调性的判断与证明 1.定义法
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-269528.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
