江苏省2014—2015学年高一数学必修二本章检测及答案:14立体几何综合.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
3 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏省 2014 2015 学年 数学 必修 本章 检测 答案 14 立体几何 综合
- 资源描述:
-
1、本章检测:立体几何综合试题1在三棱锥中,分别是的中点,则异面直线与所成的角为 22014长春质检如图,四棱锥PABCD的底面是一直角梯形,ABCD,BAAD,CD2AB,PA底面ABCD,E为PC的中点,则BE与平面PAD的位置关系为_32012辽宁高考已知正三棱锥PABC,点P,A,B,C都在半径为的球面上,若PA,PB,PC两两相互垂直,则球心到截面ABC的距离为_4 在正三棱柱中,各棱长均相等,的交点为,则与平面所成角的大小是_5正方体的棱长为1,为的中点,为线段的动点,过 的平面截该正方体所得的截面记为,则下列命题正确的是 当时,为四边形 当时,为等腰梯形当时,与的交点满足 当时,为六
2、边形当时,的面积为6在棱长为1的正方体ABCDA1B1C1D1中,M、N分别是AC1、A1B1的中点点P 在正方体的表面上运动,则总能使与垂直的点所构成的轨迹的周长等于 7右图所示的直观图,其原来平面图形的面积是 .8在直角梯形ABCD中,AB=2DC=2AD=2,DAB=ADC =90,将DBC沿BD向上折起,使面ABD垂直于面BDC,则CDAB三棱锥的外接球的体积为_.9已知平面、及直线,以此作为条件得出下面三个结论: ,其中正确结论是 10已知三棱锥的四个顶点均在半径为3的球面上,且PA、PB、PC两两互相垂直,则三棱锥的侧面积的最大值为 11设为两个不重合的平面,是两条不重合的直线,给
3、出下列四个命题:若,则;若相交且不垂直,则不垂直;若,则n; 若,则其中所有真命题的序号是 12已知三条不同的直线,c和平面,有以下六个命题:若 若异面若 若若直线异面,异面,则异面若直线相交,相交,则相交其中是真命题的编号为_ 。 13已知正ABC的边长为, CD是AB边上的高,E、F分别是AC和BC边的中点,现将ABC沿CD翻折成直二面角A-DC-B,如图所示. (1)试判断折叠后直线AB与平面DEF的位置关系,并说明理由;(2)若棱锥E-DFC的体积为,求的值;(3)在线段AC上是否存在一点P,使BPDF?如果存在,求出的值;如果不存在,请说明理由.14如图,在五棱锥SABCDE中,SA
4、底面ABCDE,SA=AB=AE=2,(1).(2)证明:平面SBC平面SAB.15(本小题满分14分)如图,在三棱柱中,底面,E、F分别是棱的中点.(1)求证:AB平面AA1 C1C;(2)若线段上的点满足平面/平面,试确定点的位置,并说明理由;(3)证明:A1C.16四棱锥底面是菱形,,分别是的中点.(1)求证:平面平面; (2)是上的动点,与平面所成的最大角为,求二面角 的正切值.17如图,在四棱锥中,底面是正方形,侧面底面 ()若,分别为,中点,求证:平面;()求证:;()若,求证:平面平面参考答案1【解析】题分析:取中点,连接则中,且,中, 且,所以为所求中,所以考点:异面直线所成角
5、2平行【解析】取PD的中点F,连接EF,在PCD中,EF=CD.又ABCD且CD2AB,EF=AB,四边形ABEF是平行四边形,EBAF.又EB平面PAD,AF平面PAD,BE平面PAD.3【解析】依题意,以PA,PB,PC为棱构造如图所示的正方体,且此球为正方体的外接球,PD1为球的直径,PD1的中点O为球心,由PD12,可得PAPBPC2,由等积法可得三棱锥PABC的高为,球心O到平面ABC的距离为.4【解析】试题分析:如图所示取BC中点E,连接AE,DE,易得与平面所成角为,设正三棱柱棱长为2,则等边三角形ABC,边上的中线,直角三角形中考点:直线与平面所成的角.5【解析】试题分析:如图
6、,当时,即Q为CC1中点,此时可得,故可得截面APQD1为等腰梯形,故正确;由上图当点Q向C移动时,满足,只需在DD1上取点M满足AMPQ,即可得截面为四边形APQM,故正确;时,如图,延长DD1至N,使,连接AN交A1D1于S,连接NQ交C1D1于R,连接SR,可证,由1,可得,故可、得,故正确;由可知当时,只需点Q上移即可,此时的截面形状仍然上图所示的APQRS,显然为五边形,故错误;当时,Q与C1重合,取A1D1的中点F,连接AF,可证,可知截面为APC1F为菱形,故其面积为,故正确考点:空间图形与平面图形的关系6【解析】试题分析:取的中点、,连接,则平面,设在平面中的射影为,过与平面平
7、行的平面为,能使与垂直的点所构成的轨迹为矩形,其周长与矩形的周长相等,正方形等于的棱长为1,矩形的周长为.考点:立体几何中的轨迹问题.74【解析】试题分析:由斜二测画法可知原图应为:其面积为:故答案为4.考点:平面图形的直观图.8【解析】试题分析:设中点为,,球心满足,设,解三角形可知, 考点:空间线面位置关系及三棱锥外接球点评:要求球的体积,首先要求出半径,关键是找到球心的位置,依据球心到4个顶点距离相等及直角三角形斜边上的中线等于斜边的一般可确定下球心在过BD中点且垂直于平面ABD的直线上9【解析】1018【解析】依题意知,PA,PB,PC两两垂直,以PA,PB,PC为棱构造长方体,则该长
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
六年级下册语文课件-2《三亚落日》|苏教版 (共51张PPT).ppt
