《三维设计》2016届(新课标)高考数学(文)5年高考真题备考试题库:第9章 第2节 古典概型 WORD版含答案.DOC
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三维设计 三维设计2016届新课标高考数学文5年高考真题备考试题库:第9章 第2节 古典概型 WORD版含答案 2016 新课 高考 数学 年高 考真题 备考 试题库 古典 WORD 答案
- 资源描述:
-
1、20102014年高考真题备选题库第9章 概率第2节 古典概型1(2014陕西,5分)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离小于该正方形边长的概率为() A. B.C. D. 解析:选B5个点中任取2个点共有10种方法,若2个点之间的距离小于边长,则这2个点中必须有1个为中心点,有4种方法,于是所求概率P.2(2014江西,5分)掷两颗均匀的骰子,则点数之和为5的概率等于()A. B.C. D.解析:选B掷两颗骰子的所有基本事件为:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,
2、6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共36种,其中点数之和为5的基本事件为(1,4),(2,3),(3,2),(4,1),共4种,所以所求概率为.3(2014湖北,5分)随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为p1 ,点数之和大于5的概率记为p2 ,点数之和为偶数的概率记为p3 ,则()Ap1p2p3 Bp2p1p3C
3、p1p3p2 Dp3p1p2解析:选C总的基本事件个数为36,向上的点数之和不超过5的有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,2),(4,1),共10个,则向上的点数之和不超过5的概率p1;向上的点数之和大于5的概率p21;向上的点数之和为偶数与向上的点数之和为奇数的个数相等,故向上的点数之和为偶数的概率p3.即p1p3乙,ss所以甲组的研发水平优于乙组(2)记E恰有一组研发成功在所抽得的15个结果中,恰有一组研发成功的结果是(a,),(,b),(a,),(,b),(a,),(a,),(,b),共7个,故事件E发生的频率为.将频率
4、视为概率,即得所求概率为P(E).12(2014陕西,12分) 某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下: 赔付金额(元)01 0002 0003 0004 000车辆数(辆)500130100150120(1)若每辆车的投保金额均为2 800元,估计赔付金额大于投保金额的概率;(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率解:(1)设A表示事件“赔付金额为3 000元”,B表示事件“赔付金额为4 000元”,以频率估计概率得P(A)0
5、.15,P(B)0.12.由于投保金额为2 800元,赔付金额大于投保金额对应的情形是3 000元和4 000元,所以其概率为P(A)P(B)0.150.120.27.(2)设C表示事件“投保车辆中新司机获赔为4 000元”,由已知,样本车辆中车主为新司机的有0.11 000100辆,而赔付金额为4 000元的车辆中,车主为新司机的有0.212024辆,所以样本车辆中新司机车主获赔金额为4 000元的频率为0.24,由频率估计概率得P(C)0.24.13(2014四川,12分)一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同随机有放回地抽取3次,每次抽取1张,
6、将抽取的卡片上的数字依次记为a,b,c.(1)求“抽取的卡片上的数字满足abc”的概率;(2)求“抽取的卡片上的数字a,b,c不完全相同”的概率解:(1)由题意,(a,b,c)所有的可能为(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2
7、),(3,3,3),共27种设“抽取的卡片上的数字满足abc”为事件A,则事件A包括(1,1,2),(1,2,3),(2,1,3),共3种所以P(A).因此,“抽取的卡片上的数字满足abc”的概率为.(2)设“抽取的卡片上的数字a,b,c不完全相同”为事件B.则事件包括(1,1,1),(2,2,2),(3,3,3),共3种所以P(B)1P()1.因此,“抽取的卡片上的数字a,b,c不完全相同”的概率为.14(2013新课标全国,5分)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是()A.B.C. D.解析:本题主要考查列举法解古典概型问题的基本能力,难度较小从1,2
8、,3,4中任取2个不同的数有以下六种情况:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足取出的2个数之差的绝对值为2的有(1,3),(2,4),故所求概率是.答案:B15(2013江西,5分)集合A2,3,B1,2,3,从A,B中各任意取一个数,则这两数之和等于4的概率是()A.B.C. D.解析:本题主要考查随机事件、列举法、古典概型的概率计算,考查分析、解决实际问题的能力从A,B中各任意取一个数记为(x,y),则有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共6个基本事件而这两数之和为4的有(2,2),(3,1),共2个基本事件又从
9、A,B中各任意取一个数的可能性相同,故所求的概率为.答案:C16(2013新课标全国,5分)从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是_解析:本题主要考查古典概型,意在考查考生对基本概念的理解与基本方法的掌握从五个数中任意取出两个数的可能结果有:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10个,其中“和为5”的结果有(1,4),(2,3),共2个,故所求概率为.答案:17(2013安徽,5分)若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为()A
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-285210.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
