《创新方案+一轮回扣》2015高考(北师大版)数学(理)复习配套试题:圆+的+方+程(知识回扣+热点突破+能力提升).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 创新方案+一轮回扣
- 资源描述:
-
1、高考资源网() 您身边的高考专家第三节圆 的 方 程1掌握确定圆的几何要素2掌握圆的标准方程与一般方程1圆的定义、方程定义平面内到定点的距离等于定长的点的轨迹叫做圆方程标准(xa)2(yb)2r2(r0)圆心C的坐标(a,b)半径为r一般x2y2DxEyF0充要条件:D2E24F0圆心坐标:半径r2点与圆的位置关系(1)理论依据:点与圆心的距离与半径的大小关系(2)三个结论圆的标准方程(xa)2(yb)2r2,点M(x0,y0),(x0a)2(y0b)2r2点在圆上;(x0a)2(y0b)2r2点在圆外;(x0a)2(y0b)20时,上述方程才表示圆;当D2E24F0时,方程表示一个点;当D2
2、E24F0时,方程不表示任何图形1(教材习题改编)圆x2y24x6y0的圆心坐标是() A(2,3) B(2,3)C(2,3) D(2,3)解析:选D圆的方程可化为(x2)2(y3)213,所以圆心坐标是(2,3)2将圆x2y22x4y10平分的直线是()Axy10 Bxy30Cxy10 Dxy30解析:选C将圆x2y22x4y10平分的直线必定过圆心,而圆x2y22x4y10的圆心坐标为(1,2),且(1,2)在直线xy10上3若点(2a,a1)在圆x2(y1)25的内部,则a的取值范围是()A1a1 B0a1C1a Da1解析:选A点(2a,a1)在圆x2(y1)25的内部,(2a)2a2
3、5,解得1a0.解得2a0),则解得D4,E2,F5.所求圆的方程为x2y24x2y50.(2)由已知可设圆心为(2,b),由22b2(1b)2r2,得b,r2.故圆C的方程为(x2)22.答案(1)x2y24x2y50(或(x2)2(y1)210)(2)(x2)22【互动探究】本例(2)中“与直线y1相切”改为“圆心在y1上”,结果如何?解:圆过点O(0,0)和点(4,0)圆心在直线x2上,又圆心在y1上,圆心的坐标为(2,1),半径r.因此,圆的方程为(x2)2(y1)25. 【方法规律】求圆的方程的两种方法(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程(2)待定系数
4、法:若已知条件与圆心(a,b)和半径r有关,则设圆的标准方程,依据已知条件列出关于a,b,r的方程组,从而求出a,b,r的值求下列圆的方程:(1)圆心在直线y4x上,且与直线l:xy10相切于点P(3,2);(2)过三点A(1,12),B(7,10),C(9,2)解:(1)法一:设圆的标准方程为(xa)2(yb)2r2,则有解得a1,b4,r2.故所求圆的方程为(x1)2(y4)28.法二:过切点且与xy10垂直的直线为y2x3.与y4x联立可得圆心为(1,4),所以半径r2.故所求圆的方程为(x1)2(y4)28.(2)法一:设圆的一般方程为x2y2DxEyF0(D2E24F0)则解得D2,
5、E4,F95,所以所求圆的方程为x2y22x4y950.法二:由A(1,12),B(7,10),得AB的中点坐标为(4,11),kAB,则AB的中垂线方程为3xy10.同理得AC的中垂线方程为xy30.联立得即圆心坐标为(1,2),半径r10,所以所求圆的方程为(x1)2(y2)2100.考点二与圆有关的轨迹问题 例2(2013新课标全国卷)已知圆M:(x1)2y21,圆N:(x1)2y29,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.自主解答由已知得圆M的圆心为M(1
6、,0),半径r11;圆N的圆心为N(1,0),半径r23.设圆P的圆心为P(x,y),半径为R.(1)因为圆P与圆M外切并且与圆N内切,所以|PM|PN|(Rr1)(r2R)r1r24.由椭圆的定义可知,曲线C是以M,N为左、右焦点,长半轴长为2,短半轴长为的椭圆(左顶点除外),其方程为1(x2)(2)对于曲线C上任意一点P(x,y),由于|PM|PN|2R22,所以R2,当且仅当圆P的圆心为(2,0)时,R2.所以当圆P的半径最长时,其方程为(x2)2y24.若l的倾斜角为90,则l与y轴重合,可得|AB|2.若l的倾斜角不为90,由r1R知l不平行于x轴,设l与x轴的交点为Q,则,可求得Q
7、(4,0),所以可设l:yk(x4)由l与圆M相切得1,解得k.当k时,将yx代入1,并整理得7x28x80,解得x1,x2.所以|AB|x2x1|.当k时,由图形的对称性可知|AB|.综上,|AB|2或|AB|.【方法规律】求与圆有关的轨迹方程的方法已知直角三角形ABC的斜边为AB,且A(1,0),B(3,0),求:(1)直角顶点C的轨迹方程;(2)直角边BC的中点M的轨迹方程解:(1)法一:设顶点C(x,y),因为ACBC,所以x3且x1.又kAC,kBC,且kACkBC1,所以1,即x2y22x30.因此,直角顶点C的轨迹方程为x2y22x30(x3且x1)法二:设AB的中点为D,由中点
8、坐标公式得D(1,0),由直角三角形的性质知,|CD|AB|2,由圆的定义知,动点C的轨迹是以D(1,0)为圆心,2为半径的圆(由于A,B,C三点不共线,所以应除去与x轴的交点)所以直角顶点C的轨迹方程为(x1)2y24(x3且x1)(2)设点M(x,y),点C(x0,y0),因为B(3,0),M是线段BC的中点,由中点坐标公式得x(x3且x1),y,于是有x02x3,y02y.由(1)知,点C在圆(x1)2y24(x3且x1)上运动,将x02x3,y02y代入该方程得(2x4)2(2y)24,即(x2)2y21(x3且x1)因此动点M的轨迹方程为(x2)2y21(x3且x1).高频考点考点三
9、 与圆有关的最值问题1与圆有关的最值问题,是高考命题的热点,多以选择题、填空题的形式呈现,试题难度不大,多为容易题、中档题2高考中主要有以下几个命题角度:(1)与圆有关的长度或距离的最值问题;(2)与圆上的点(x,y)有关的代数式的最值问题例如,形如u型;形如taxby型;形如(xa)2(yb)2型例3(1)(2013重庆高考)已知圆C1:(x2)2(y3)21,圆C2:(x3)2(y4)29,M,N分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|PN|的最小值为()A54 B.1C62 D.(2)(2013山东高考)过点(3,1)作圆(x2)2(y2)24的弦,其中最短弦的长为_自主
10、解答(1)圆C1,C2的图象如图所示设P是x轴上任意一点,则|PM|的最小值为|PC1|1,同理|PN|的最小值为|PC2|3,则|PM|PN|的最小值为|PC1|PC2|4.作C1关于x轴的对称点C1(2,3),连接C1C2,与x轴交于点P,连接PC1,根据三角形两边之和大于第三边可知|PC1|PC2|的最小值为|C1C2|,则|PM|PN|的最小值为54.(2)设P(3,1),圆心C(2,2),则|PC|,由题意知最短的弦过P(3,1)且与PC垂直,所以最短弦长为22.答案(1)A(2)2与圆有关的最值问题的常见类型及解题策略(1)与圆有关的长度或距离的最值问题的解法一般根据长度或距离的几
11、何意义,利用圆的几何性质数形结合求解(2)与圆上点(x,y)有关代数式的最值的常见类型及解法形如u型的最值问题,可转化为过点(a,b)和点(x,y)的直线的斜率的最值问题;形如taxby型的最值问题,可转化为动直线的截距的最值问题;形如(xa)2(yb)2型的最值问题,可转化为动点到定点的距离平方的最值问题已知M为圆C:x2y24x14y450上任意一点,且点Q(2,3)(1)求|MQ|的最大值和最小值;(2)若M(m,n),求的最大值和最小值解:(1)由圆C:x2y24x14y450,可得(x2)2(y7)28,所以圆心C的坐标为(2,7),半径r2.又|QC|4.所以|MQ|max426,
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-287869.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
广西桂林市灌阳县2023年七年级下学期期中数学试题【及答案】.pptx
