江苏省南京市第二十九中2020届高三数学下学期阶段测试试题(含解析).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏省 南京市 第二 十九 2020 届高三 数学 下学 阶段 测试 试题 解析
- 资源描述:
-
1、江苏省南京市第二十九中2020届高三数学下学期阶段测试试题(含解析)一、填空题(本大题共14小题,每小题5分,计70分请把答案写在答题纸的指定位置上)1.已知集合A,B2,3,4,5,则AB_【答案】【解析】分析】先求出集合,再求出集合即可得到答案【详解】由题意得,故答案为【点睛】本题考查集合的并集运算,解题的关键是正确求出集合,属于简单题2.设复数,则_【答案】3【解析】【分析】将复数化为的形式,利用复数的模的定义即可求出【详解】因为,所以,所以故答案为:【点睛】本题主要考查复数的四则运算及复数的模,属于基础题3.某算法的伪代码如图所示,如果输入的值为,则输出的值为_【答案】5【解析】【分析
2、】根据伪代码写出分段函数,再根据自变量选择相应的解析式,即可求出输出值【详解】由伪代码可得,当时,故答案为:【点睛】本题主要考查条件语句及分段函数,属于基础题4.某班有男生30人,女生20人,现采用分层抽样的方法在班上抽取15人参加座谈会,则抽到的女生人数为_.【答案】6【解析】【分析】根据分层抽样的概念可知在抽取的容量为的样本中男女生的比例也应为,可求得抽取的女生人数.【详解】因为男女生的比例为,由分层抽样的概念可知在抽取的容量为的样本中男女生的比例也应为,则抽取的女生人数为。故答案为:.【点睛】本题考查分层抽样,关键在于抽取的样本中男女生的比例与男女生的人数的比例相等,属于基础题.5.青岛
3、二中高一高二高三三个年级数学MT的学生人数分别为240人,240人,120人,现采用分层抽样的方法从中抽取5名同学参加团队内部举办的趣味数学比赛,再从5位同学中选出2名一等奖记A“两名一等奖来自同一年级”,则事件A的概率为_【答案】【解析】【分析】利用分层抽样的性质求出高一学生抽取2名,高二学生抽取2名,高三学生抽取1名,再从5位同学中选出2名一等奖,基本事件个数,记 “两名一等奖来自同一年级”,则事件包含的基本事件个数,由此能求出事件的概率【详解】解:青岛二中高一高二高三三个年级数学MT的学生人数分别为240人,240人,120人,现采用分层抽样的方法从中抽取5名同学参加团队内部举办的趣味数
4、学比赛,则高一学生抽取:52,高二学生抽取:52,高三学生抽取:51,再从5位同学中选出2名一等奖,基本事件个数n10,记 “两名一等奖来自同一年级”,则事件A包含的基本事件个数m2,事件A的概率为p故答案为:【点睛】本题考查概率的求法,考查古典概型、分层抽样的性质等基础知识,考查运算求解能力,属于基础题6.已知双曲线的一条渐近线的倾斜角为,且过点,则双曲线的焦距等于_.【答案】【解析】【分析】根据题意得出,然后将点的坐标代入双曲线的标准方程,可求出、的值,即可计算出双曲线的焦距.【详解】双曲线的渐近线方程为,由题意可得,所以,双曲线标准方程为,将点的坐标代入双曲线的标准方程得,得,因此,双曲
5、线的焦距为.故答案为:.【点睛】本题考查双曲线焦距的计算,同时也考查了双曲线渐近线方程的求解,要结合题意得出、的值,考查运算求解能力,属于中等题.7.已知是定义在R上的奇函数,当时,则_【答案】【解析】【分析】根据是定义在上的奇函数,可得,只需将代入表达式,即可求出的值,进而求出的值【详解】因为是定义在上的奇函数,可得,又当时,所以,所以故答案为:【点睛】本题主要考查利用奇函数的性质转化求函数值,关键是定义的灵活运用,属于基础题8.底面半径都是3且高都是4的圆锥和圆柱的全面积之比为_【答案】【解析】【分析】利用底面半径都是3且高都是4,直接求出圆锥或圆柱的全面积,即可确定二者的比值【详解】圆柱
6、与圆锥的底面半径,圆柱与圆锥的高,可得圆锥的母线长为,则圆锥的全面积为:;圆柱的全面积为:圆锥的全面积与圆柱的全面积之比为:故答案为【点睛】本题主要考查圆锥与圆柱的性质,以及圆锥、圆柱的全面积,意在考查综合应用所学知识解答问题的能力,属于基础题9.已知等比数列的前项和为,若,则_.【答案】【解析】【分析】可得出,并计算出,利用等比数列片断和的性质得出、成等比数列,可得出的值.【详解】,且,、成等比数列,即,因此,.故答案为:.【点睛】本题考查利用等比数列片断和性质求值,考查计算能力,属于中等题.10.已知a,b,c均为正数,且abc4(ab),则abc的最小值为_【答案】8【解析】11.在平面
7、直角坐标系中,已知圆,是圆上的两个动点,则的取值范围为 【答案】【解析】试题分析:圆,,由余弦定理可得,设为的中点,设,的取值范围为.考点:向量的几何意义;向量的数量积;余弦定理.12.在平面直角坐标系中,直线与圆交于点,为弦的中点,则点的横坐标的取值范围是_【答案】【解析】【分析】将直线与圆联立方程组消去可得,利用根与系数关系可得,再根据直线与圆相交,利用判别式求出的范围,进而求出点M的横坐标的取值范围【详解】由消去得,所以,所以,因为直线与圆交于点A,B两点,所以,所以,令,所以,其在上单调递减,所以故答案为:【点睛】本题主要考查直线与圆的位置关系,考查转化与化归的思想,属于中档题13.在
8、中,若,则实数_【答案】【解析】【分析】在中,利用余弦定理可得,然后将进行切化弦,再利用正、余弦定理将角化为边可得,从而可得,解得的值,由正弦定理即可求出结果【详解】在中,由余弦定理得,因为,即,所以,由正弦定理得,所以,整理得,由可得,所以,解得,所以,又,所以故答案为:【点睛】本题主要考查正、余弦定理的应用,同时考查同角三角函数关系,属于中档题14.已知函数,若对任意的,总存在使得成立,则实数a的取值范围是_【答案】【解析】【分析】根据任意的,总存在使得成立,问题转化为的值域是值域的子集,故只需分别求出两个函数的值域,利用子集关系建立不等式,即可求出a的取值范围.【详解】因为函数在上单调递
9、减,所以,即,所以函数的值域为,因为对任意的,总存在使得成立,故的值域是值域的子集,对,当时,符合题意;当时,函数在单调递增,所以,所以解得,又,所以,综上,实数a的取值范围是故答案为:【点睛】本题主要考查等式型双变量存在性和任意性混搭问题,对于形如“任意的,都存在,使得成立”此类问题“等价转化”策略是利用的值域是值域的子集来求解参数的范围二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内)15.已知向量,(1)若,且,求实数的值; (2)若,求的最大值【答案】(1);(2)6【解析】【分析】(1)将转化为,然后根据向量的坐标运算
10、求出的坐标代入,即可求出的值;(2)根据可得,而,利用基本不等式即可求出的最大值【详解】(1)当,时,又,所以,若,则,即,解得(2)因为,所以,因为,所以,则,所以, 故当或时,的最大值为6【点睛】本题主要考查向量的坐标运算,向量的数量积,向量的模及基本不等式,属于基础题16.如图,在三棱柱ABCA1B1C1中,ABAC,A1CBC1,AB1BC1,D,E分别是AB1和BC的中点.求证:(1)DE平面ACC1A1;(2)AE平面BCC1B1.【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)连结A1B,可证出DEA1C,再由线面平行的判断定理即可证出.(2)由(1)知DEA1
11、C,且A1CBC1,可得BC1DE,结合BC1AB1,可证出BC1平面ADE,由线面垂直的定义可证出AEBC1,利用线面垂直的判断定理即可证出结论.【详解】连结A1B,在三棱柱ABCA1B1C1中,AA1BB1且AA1BB1,所以四边形AA1B1B是平行四边形.又因为D是AB1的中点,所以D也是BA1的中点在BA1C中,D和E分别是BA1和BC的中点,所以DEA1C.又因为DE平面ACC1A1,A1C平面ACC1A1,所以DE平面ACC1A1.(2)由(1)知DEA1C,因为A1CBC1,所以BC1DE.又因为BC1AB1,AB1DED,AB1,DE平面ADE,所以BC1平面ADE.又因为AE
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
