2023年新教材高考数学一轮复习 课时过关检测(三十九)空间几何体的截面、球的切(接)问题(含解析).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023年新教材高考数学一轮复习 课时过关检测三十九空间几何体的截面、球的切接问题含解析 2023 新教材 高考 数学 一轮 复习 课时 过关 检测 三十九 空间 几何体 截面 问题 解析
- 资源描述:
-
1、课时过关检测(三十九) 空间几何体的截面、球的切(接)问题A级基础达标1体积为8的正方体的顶点都在同一球面上,则该球的表面积为()A12BC8D4解析:A设正方体的棱长为a,则a38,解得a2设球的半径为R,则2R2,即R所以球的表面积S4R2122一个圆柱的内切球的表面积为36,则这个圆柱的表面积为()A45B27C54D36解析:C设圆柱的内切球的半径为r,则4r236,可得r3,所以该圆柱的底面圆半径为R3,圆柱的高为h2r6,因此该圆柱的表面积为S2Rh2R223623254故选C3鲁班锁是中国传统的智力玩具,起源于中国古代建筑中首创的榫卯结构,它的外观是如图所示的十字立方体,其上下、
2、左右、前后完全对称,6根等长的正四棱柱体分成3组,经90榫卯起来若正四棱柱的高为8,底面正方形的边长为2,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积至少为(容器壁的厚度忽略不计,结果保留)()A96B84C42D16解析:B若球形容器表面积最小,则正四棱柱与球内接,此时球体的直径等于一组正四棱柱的体对角线长,即2R2,所以R,球形容器的表面积S4R284故选B4如图,在正四棱柱ABCDA1B1C1D1中,AB1,AA1,点E为AB上的动点,则D1ECE的最小值为()A2BC1D2解析:B如图,连接D1A,C1B并分别延长至F,G,使得AFAD,BGBC,连接EG,FG,四棱柱ABCD
3、A1B1C1D1为正四棱柱,AB平面ADD1A1,AB平面BCC1B1,ABAF,ABBG,又ABADAF,四边形ABGF为正方形,EGCE,D1ECE的最小值为D1G,又D1G,D1ECE的最小值为5(2022淮北一模)已知正方体ABCDA1B1C1D1的边长为2,边AB的中点为M,过点M且垂直BD1的平面被正方体所截的截面面积为()ABC2D3解析:A如图,连接AC,CB1,AB1,BC1,易知CB1BC1,CB1D1C1,又BC1D1C1C1,BC1,D1C1平面BD1C1,所以CB1平面BC1D1因为BD1平面BD1C1,故CB1BD1,同理可证CA平面BDD1,则BD1平面BDD1,
4、则CABD1,又CACB1C,CA,CB1平面CAB1,故BD1平面ACB1取BC的中点E,BB1的中点F,连接ME,EF,MF,易知平面MEF平面ACB1,所以BD1平面MEF,即MEF为所求的截面易知MEF为正三角形,边长ME,故SMEF故选A6(多选)用一个平面截一个正方体,截面图形可以是()A三角形B等腰梯形C五边形D正六边形解析:ABCD如图所示用一个平面去截正方体,截面可能是三角形、等腰梯形、五边形、正六边形,故选A、B、C、D7(多选)已知球O的半径为,则下列结论正确的是()A球O的表面积为6B球O的内接正方体的棱长为1C球O的外切正方体的棱长为D球O的内接正四面体的棱长为2解析
5、:AD球的表面积为4246,A正确正方体的体对角线长为2,棱长为,B错误球的外切正方体的棱长为2,C错误将正四面体补形为正方体如图所示AB1CD1,正方体的体对角线长为2,棱长为,所以正四面体的棱长为2,D正确 故选A、D8(2022北京海淀质检)在一个棱长为32的正方体内部有一个大球和小球,大球与正方体的六个面都相切,小球可以在正方体和大球之间的空隙自由滑动,则小球的表面积最大值是_解析:如图所示,为组合体的中截面,易知当小球的表面积最大时大球半径R和小球半径r满足RRrr,2R32,解得r,故小球表面积的最大值为答案:9已知正三棱锥SABC的侧棱长为4,底面边长为6,则该正三棱锥外接球的表
6、面积是_解析:如图,过点S作SE平面ABC于点E,记球心为O在正三棱锥SABC中,底面边长为6,侧棱长为4,BE62,SE6球心O到四个顶点的距离相等,均等于该正三棱锥外接球的半径R,OBR,OE6R在RtBOE中,OB2BE2OE2,即R212(6R)2,解得R4,外接球的表面积为S4R264答案:6410如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为OD,E,F为圆O上的点,DBC,ECA,FAB分别是以BC,CA,AB为底边的等腰三角形沿虚线剪开后,分别以BC,CA,AB为折痕折起DBC,ECA,FAB,使得D,E,F重合,得到三棱锥当ABC的边长变化时,求
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-297812.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
