河南省皖豫2022-2023学年高二数学上学期阶段性测试(二)试卷(Word版含答案).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 河南省 2022 2023 学年 数学 上学 阶段性 测试 试卷 Word 答案
- 资源描述:
-
1、2022-2023学年(上)高二年级阶段性测试(二)数学考生注意:1.答题前,考生务必将自己的姓名、考生号填写在试卷和答题卡上,并将考生号条形码粘贴在答题卡上的指定位置.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线:与两坐标轴围成的三角形的面积是A.5B.4C.3D.22.已知在空间四边形中,则A. B. C. D
2、. 3.已知圆关于直线对称,且点在该直线上,则实数A.3B.2C.-2D.-34.已知点,若过点的直线与线段相交,则该直线的斜率的取值范围是A. B. C. D. 5.若圆与圆有且仅有一条公切线,则实数A.-1B.1C.1D.06.在长方体中,则直线与平面所成角的余弦值为A. B. C. D. 7.某公司要建一个以甲、乙,丙三地为顶点的大型三角形养鱼场,若甲、乙两地之间的距离为12km,且甲、丙两地的距离是乙,丙两地距离的倍,则这个三角形养鱼场的面积最大是A. B. C. D. 8.已知抛物线C:的焦点为F,点M在C上,点P的横坐标为-1,点Q的纵坐标为0,若,则A.4B.3C. D.2二、多
3、项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知空间中三点,则A.向量与互相垂直B.与方向相反的单位向量的坐标是C. 与夹角的余弦值是D. 在上的投影向量的模为10.已知曲线:,则A.若曲线表示焦点在轴上的双曲线,则的焦距为B.若曲线表示椭圆,则的取值范围是C.若,则的焦点坐标是和D.若,则的渐近线方程为11.已知圆:与圆:,则A.若圆与轴相切,则B.若,则圆与圆相交C.当时,两圆的公共弦长为D.直线与圆始终有两个交点12.已知椭圆:的左顶点为,左、右焦点分别为,点在上,且直线AM的斜率为.
4、点P是椭圆C上的动点,则A.椭圆的离心率为B.若,则点的横坐标的取值范围是C. 的取值范围为D. 上有且只有4个点,使得是直角三角形三、填空题:本题共4小题,每小题5分,共20分.13.已知空间向量,则与的夹角为_.4.已知椭圆:的短轴长为6,是椭圆C的两个焦点,点M在C上,若的最大值为16,则圆C的离心率为_.15.已知直线与圆:交于A,B两点,则的面积的最大值为_.16.已知,分别为双曲线:的左、右焦点,过点且斜率为的直线与双曲线的右支交于P,Q两点,若是等腰三角形,则双曲线的离心率为_.四、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.(10分)已知在中,边BC和AC所
5、在的直线方程分别为和,边AB的中点为.()求点,的坐标;()求BC边上的中线所在的直线的方程.18.(12分)如图,在棱长为2的正方体中,线段DB的中点为F,点G在棱CD上,且满足.()若E为棱的中点,求证:;()求直线与所成角的余弦值.19.(12分)已知圆:过点,且圆关于直线:对称的圆为圆.()求圆的方程;()若过点的直线被圆截得的弦长为8,求直线的方程.20.(12分)已知抛物线:,直线与抛物线C相交于A,B两点,且.()求抛物线C的方程;()若点P的坐标为,过抛物线焦点的直线交C于M,N两点,求的最小值.21.(12分)如图,在三棱锥中,是斜边为AC的等腰直角三角形,是边长为4的等边三
6、角形,且,为棱AC的中点.()证明:平面ABC.()问:在棱BC上是否存在点M(不与棱BC的端点重合),使得平面PAM与平面PAC的夹角为30?若存在,指出点M的位置;若不存在,请说明理由.22.(12分)已知椭圆:的左焦点为,左顶点为,离心率为.()求的方程;()若过坐标原点且斜率为的直线与E交于A,B两点,直线AF与的另一个交点为,的面积为,求直线的方程.20222023学年(上)高二年级阶段性测试(二)数学答案一、单项选择题:本题共8小题,每小题5分,共40分.1.答案D命题意图 本题考查直线在轴和轴上的截距.解析 由题可知直线与两坐标轴的交点分别为(0,-2),(2,0),所以该直线与
7、两坐标轴围成的三角形的面积是.2.答案A命题意图 本题考查空间向量的运算.解析 因为,故G为CD的中点,如图,由平行四边形法则可得,所以.3.答案D命题意图 本题考查直线与圆的位置关系.解析 圆的圆心为,依题意,点在直线,因此,即,又,所以, .4.答案B命题意图 本题考查直线的斜率.解析 过点C的直线与线段AB相交,又该直线与轴垂直时,斜率不存在,所以该直线的斜率的取值范围是为.5.答案D命题意图 本题考查两圆的位置关系.解析 将化为标准方程得,即圆心为,半径为2,圆的圆心为,半径为1.因为圆与圆有且仅有一条公切线,所以两圆的位置关系为内切,所以,即,解得.6.答案C命题意图 本题考查空间向
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-300736.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
