《考前三个月》2015届高考数学(人教通用理科)必考题型过关练:专题8 第42练.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 考前三个月
- 资源描述:
-
1、第42练随机变量及其分布列内容精要随机变量及其分布列是新课标高考的一个必考热点,主要包括离散型随机变量及其分布列,期望与方差,二项分布及其应用和正态分布对本部分知识的考查,一是以实际生活为背景求解离散型随机变量的分布列和期望;二是独立事件概率的求解;三是考查二项分布题型一离散型随机变量的期望和方差例12014年男足世界杯在巴西举行,为了争夺最后一个小组赛参赛名额,甲、乙、丙三支国家队要进行比赛,根据规则:每支队伍比赛两场,共赛三场,每场比赛胜者得3分,负者得0分,没有平局,获得第一名的队伍将夺得这个参赛名额已知乙队胜丙队的概率为,甲队获得第一名的概率为,乙队获得第一名的概率为.(1)求甲队分别
2、战胜乙队和丙队的概率P1,P2;(2)设在该次比赛中,甲队得分为,求的分布列和数学期望破题切入点(1)利用相互独立事件同时发生的概率公式,结合甲队获得第一名与乙队获得第一名的条件列出方程,从而求出P1,P2;(2)先根据比赛得分的规则确定甲队得分的可能取值,然后利用相互独立事件的概率计算公式分别求解对应的概率值,列出分布列求其期望解(1)根据题意,甲队获得第一名,则甲队胜乙队且甲队胜丙队,所以甲队获第一名的概率为P1P2.乙队获得第一名,则乙队胜甲队且乙队胜丙队,所以乙队获第一名的概率为(1P1).解,得P1,代入,得P2,所以甲队战胜乙队的概率为,甲队战胜丙队的概率为.(2)可能取的值为0,
3、3,6,当0时,甲队两场比赛皆输,其概率为P(0)(1)(1);当3时,甲队两场只胜一场,其概率为P(3)(1)(1);当6时,甲队两场皆胜,其概率为P(6).所以的分布列为036P所以E()036.题型二相互独立事件的概率例2红队队员甲、乙、丙与蓝队队员A、B、C进行围棋比赛,甲对A、乙对B、丙对C各一盘已知甲胜A、乙胜B、丙胜C的概率分别为0.6、0.5、0.5.假设各盘比赛结果相互独立(1)求红队至少两名队员获胜的概率;(2)用表示红队队员获胜的总盘数,求的分布列和数学期望E()破题切入点设“甲胜A”为事件D,“乙胜B”为事件E,“丙胜C”为事件F,则第(1)问就是求事件DEDFEFDE
4、F的概率,根据互斥事件的概率加法公式和相互独立事件的概率乘法公式进行计算第(2)问中的可取0,1,2,3,分别对应事件 , FED ,DEDFEF,DEF,求出其概率就得到了的分布列,然后按照数学期望的计算公式求数学期望解(1)设“甲胜A”为事件D,“乙胜B”为事件E,“丙胜C”为事件F,则,分别表示甲不胜A、乙不胜B、丙不胜C的事件因为P(D)0.6,P(E)0.5,P(F)0.5,由对立事件的概率公式,知P()0.4,P()0.5,P()0.5.红队至少两人获胜的事件有DE,DF,EF,DEF.由于以上四个事件两两互斥且各盘比赛的结果相互独立,因此红队至少两人获胜的概率为PP(DE)P(D
5、F)P(EF)P(DEF)0.60.50.50.60.50.50.40.50.50.60.50.50.55.(2)由题意,知的可能取值为0,1,2,3.因此P(0)P( )0.40.50.50.1,P(1)P( F)P(E)P(D )0.40.50.50.40.50.50.60.50.50.35,P(3)P(DEF)0.60.50.50.15.由对立事件的概率公式,得P(2)1P(0)P(1)P(3)0.4.所以的分布列为0123P0.10.350.40.15因此E()00.110.3520.430.151.6.题型三二项分布问题例3(2013山东)甲、乙两支排球队进行比赛,约定先胜3局者获得
6、比赛的胜利,比赛随即结束除第五局甲队获胜的概率是外,其余每局比赛甲队获胜的概率都是.假设各局比赛结果相互独立(1)分别求甲队以30,31,32胜利的概率;(2)若比赛结果为30或31,则胜利方得3分,对方得0分;若比赛结果为32,则胜利方得2分,对方得1分求乙队得分X的分布列及数学期望破题切入点理解相互独立事件、二项分布的概念,掌握离散型随机变量的分布列与数学期望的计算解(1)记“甲队以30胜利”为事件A1,“甲队以31胜利”为事件A2,“甲队以32胜利”为事件A3,由题意,知各局比赛结果相互独立,故P(A1)()3,P(A2)C()2(1),P(A3)C()2(1)2.所以甲队以30胜利、3
7、1胜利的概率都为,以32胜利的概率为.(2)设“乙队以32胜利”为事件A4,由题意,知各局比赛结果相互独立,所以P(A4)C(1)2()2(1).由题意,知随机变量X的所有可能的取值为0,1,2,3,根据事件的互斥性,得P(X0)P(A1A2)P(A1)P(A2),又P(X1)P(A3),P(X2)P(A4),P(X3)1P(X0)P(X1)P(X2),故X的分布列为X0123P所以E(X)0123.总结提高(1)离散型随机变量的期望和方差的求解,一般分两步:一是定型,即先判断随机变量的分布是特殊类型,还是一般类型,如两点分布、二项分布、超几何分布等属于特殊类型;二是定性,对于特殊类型的期望和
8、方差可以直接代入相应公式求解,而对于一般类型的随机变量,应先求其分布列然后代入相应公式计算,注意离散型随机变量的取值与概率间的对应(2)两个事件相互独立是指一个事件的发生与否对另一个事件的发生与否没有关系,在一些问题中我们可以根据问题的实际意义来判断两个事件是否相互独立(3)对于能够判断为服从二项分布的随机变量,可直接代入公式1从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是()A. B. C. D.答案D解析个位数与十位数之和为奇数,则个位数与十位数中必有一个奇数一个偶数,所以可以分两类(1)当个位为奇数时,有5420(个)符合条件的两位数(2)当个位为偶数时,有5525(
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-308542.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
