分享
分享赚钱 收藏 举报 版权申诉 / 10

类型江西乐安一中高三数学培优教案:23第一讲 常用的数学思想和方法:.doc

  • 上传人:a****
  • 文档编号:332218
  • 上传时间:2025-11-27
  • 格式:DOC
  • 页数:10
  • 大小:484KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    江西乐安一中高三数学培优教案:23第一讲 常用的数学思想和方法: 江西 乐安 一中 数学 教案 23 第一 常用 思想 方法
    资源描述:

    1、高考资源网() 您身边的高考专家常用的数学思想和方法:(一)网上课堂常用的数学思想和方法:1配方法、待定系数法、换元法:配方法、待定系数法、换元法是几种常用的数学基本方法.这些方法是数学思想的具体体现,是解决问题的手段,它不仅有明确的内涵,而且具有可操作性,有实施的步骤和作法.配方法是对数学式子进行一种定向的变形技巧,由于这种配成“完全平方”的恒等变形,使问题的结构发生了转化,从中可以找到已知与未知之间的联系,促成问题的解决.待定系数法的实质是方程的思想,这个方法是将待定的未知数与已知数统一在方程关系中,从而通过解方程(或方程组)求得未知数.换元法是一种变量代换,它是用一种变数形式去取代另一种

    2、变数形式,从而使问题得到简化,换元的实质是转化.例1已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为( ).(A)(B)(C)5(D)6分析及解:设长方体三条棱长分别为x,y,z,则依条件得: 2(xy+yz+zx)=11, 4(x+y+z)=24.而欲求的对角线长为,因此需将对称式写成基本对称式x+y+z及xy+yz+zx的组合形式,完成这种组合的常用手段是配方法.故: =62-11=25 ,应选C.例2设F1和F2为双曲线的两个焦点,点P在双曲线上且满足F1PF2=90,则F1PF2的面积是( ).(A)1(B)(C)2(D)分析及解:欲求(1),而由已知

    3、能得到什么呢?由F1PF2=90,得(2),又根据双曲线的定义得|PF1|-|PF2|=4(3),那么(2)、(3)两式与要求的三角形面积有何联系呢?我们发现将(3)式完全平方,即可找到三个式子之间的关系.即,故 , 选(A).注:配方法实现了“平方和”与“和的平方”的相互转化.例3设双曲线的中心是坐标原点,准线平行于x轴,离心率为,已知点P(0,5)到该双曲线上的点的最近距离是2,求双曲线方程.分析及解:由题意可设双曲线方程为,a=2b,因此所求双曲线方程可写成: (1),故只需求出a可求解.设双曲线上点Q的坐标为(x,y),则|PQ|= (2),点Q(x,y)在双曲线上,(x,y)满足(1

    4、)式,代入(2)得|PQ|= (3),此时|PQ|2表示为变量y的二次函数,利用配方法求出其最小值即可求解.由(3)式有(ya或y-a).二次曲线的对称轴为y=4,而函数的定义域ya或y-a,因此,需对a4与a4分类讨论.(1)当a4时,如图(1)可知函数在y=4处取得最小值,令,得a2=4所求双曲线方程为.(2)当a4时,如图(2)可知函数在y=a处取得最小值,令,得a2=49,所求双曲线方程为.注:此题是利用待定系数法求解双曲线方程的,其中利用配方法求解二次函数的最值问题,由于二次函数的定义域与参数a有关,因此需对字母a的取值分类讨论,从而得到两个解,同学们在解答数习题时应学会综合运用数学

    5、思想方法解题.例4设f(x)是一次函数,且其在定义域内是增函数,又,试求f(x)的表达式.分析及解:因为此函数的模式已知,故此题需用待定系数法求出函数表达式.设一次函数y=f(x)=ax+b (a0),可知 ,.比较系数可知: 解此方程组,得 ,b=2,所求f(x)=.例5如图,已知在矩形ABCD中,C(4,4),点A在曲线(x0,y0)上移动,且AB,BC两边始终分别平行于x轴,y轴,求使矩形ABCD的面积为最小时点A的坐标.分析及解:设A(x,y),如图所示,则(4-x)(4-y)(1)此时S表示为变量x,y的函数,如何将S表示为一个变量x(或y)的函数呢?有的同学想到由已知得x2+y2=

    6、9,如何利用此条件?是从等式中解出x(或y),再代入(1)式,因为表达式有开方,显然此方法不好.如果我们将(1)式继续变形,会得到S=16-4(x+y)+xy (2)这时我们可联想到x2+y2与x+y、xy间的关系,即(x+y)2=9+2xy.因此,只需设t=x+y,则xy=,代入(2)式得 S=16-4t+(3)S表示为变量t的二次函数,0x3,0y3,3t1(C)kR(D)k=或k=12在直角坐标系内有两点A(-1,m),B(-1,3),点A在抛物线x2=2py上,F为抛物线的焦点,若|AB|+|AF|=,则m的值为( ).(A)(B)(C)1(D)不能确定3已知,则f(4)的值是( ).

    7、(A)(B)(C)(D)4关于x的方程(a)有实根的充要条件为( ).(A)a-4(B)-4a0(C)-3a0(D)以上都不对5设函数能表示成y=Asin(x+)的形式(00,且a1,解关于x的不等式:.11设关于x的函数(1)求函数y的最大值M(a);(2)是否存在正常数b(b1),使a(1,+)时,的最大值是.12若关于x的方程有模为1的虚根,求实数a的值及方程的根.13点P(x,y)在椭圆上移动时,求函数u=x2+2xy+4y2+x+2y的最大值.14过坐标原点的直线l与椭圆相交于A,B两点,若以AB为直径的圆恰好通过椭圆的左焦点F,求直线l的倾斜角.15设集合A=(1)若A中有且只有一

    8、个元素,求实数a的取值集合B;(2)当aB时,不等式x2-5x-6a(x-4)恒成立,求x的取值范围.点拨与解答1C由化简得,kR.2B根据抛物线定义及|AB|+|AF|=,得,p=1,于是x2=2y,故可解得m=.3C设t=x3,则,.4C设,则0t1,所求问题转化为方程在(0,1内有实根,由t2-4t-a=0,得0t1,-3a0,解得 -1k1 (k0)存在满足条件的直线l,斜率为-1k0或0k1.9圆在点A的切线方程为4x-y-17=0,双曲线的一条渐近线为4x-y=0,可设双曲线方程为=,将A(4,-1)代入双曲线方程得=.双曲线方程为.10原不等式可化为令 t=,则原不等式化为2|t

    9、-1|-|t-2|2,利用零点分段法解此不等式可得-2t2,-21时, ;当0a1时, .11(1)显然 1-x20,-1x1,令x=,则y=-,01, (a1)(2)当a(1,+)时,M(a)=a2-4a+13,当a=2时,M(a)有最小值9,要使在a(1,+)上有最大值必须b(0,1),若b存在,则,求得 ,故有满足要求.12原方程可化为 ,令t=,则tR, 方程为 (*) 方程有虚根, =,即-8t0且方程化为t2-2t+a=0 (*),A中有且只有一个元素等价于方程(*)有且只有一个正根,再令f(t)=t2-2t+a,则=0 或即a=1或a0,从而B=(-,01.(2)当a=1时,x0恒成立,故 4.综上讨论,x的取值范围是(,4.高考资源网w。w-w*k&s%5¥u高考资源网w。w-w*k&s%5¥u 版权所有高考资源网

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:江西乐安一中高三数学培优教案:23第一讲 常用的数学思想和方法:.doc
    链接地址:https://www.ketangku.com/wenku/file-332218.html
    相关资源 更多
  • 江苏省淮安市南陈集中学2014-2015学年高二数学1月调查测试试题(扫描版)苏教版.doc江苏省淮安市南陈集中学2014-2015学年高二数学1月调查测试试题(扫描版)苏教版.doc
  • 湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 理 试题 WORD版含答案.doc湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 理 试题 WORD版含答案.doc
  • 湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 文 试题 WORD版含答案.doc湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 文 试题 WORD版含答案.doc
  • 江苏省淮安市南陈集中学2014-2015学年高一上学期12月调考数学试卷 WORD版含解析.doc江苏省淮安市南陈集中学2014-2015学年高一上学期12月调考数学试卷 WORD版含解析.doc
  • 江西省金溪县第一中学高一数学上学期第二次12月月考试题.docx江西省金溪县第一中学高一数学上学期第二次12月月考试题.docx
  • 湖北省武汉市江夏区2012-2013学年高一上学期期中联考数学试题 WORD版含答案.doc湖北省武汉市江夏区2012-2013学年高一上学期期中联考数学试题 WORD版含答案.doc
  • 湖北省武汉市江夏一中2019-2020学年高二数学下学期3月月考试题(含解析).doc湖北省武汉市江夏一中2019-2020学年高二数学下学期3月月考试题(含解析).doc
  • 湖北省武汉市汉阳区2015_2016学年七年级数学上学期期中试卷新人教版.doc湖北省武汉市汉阳区2015_2016学年七年级数学上学期期中试卷新人教版.doc
  • 湖北省武汉市汉阳一中、江夏一中2017-2018学年高一10月联考数学试卷 WORD版含答案.doc湖北省武汉市汉阳一中、江夏一中2017-2018学年高一10月联考数学试卷 WORD版含答案.doc
  • 江西省重点高中2022学年高二数学上学期第三次月考试题 理.docx江西省重点高中2022学年高二数学上学期第三次月考试题 理.docx
  • 江西省重点高中2022学年高二数学上学期第三次月考试题 文.docx江西省重点高中2022学年高二数学上学期第三次月考试题 文.docx
  • 湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(六).doc湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(六).doc
  • 湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(五).doc湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(五).doc
  • 江苏省淮安市六校联盟2020届高三第三次学情调查数学(理)试题(含附加题) WORD版含答案.doc江苏省淮安市六校联盟2020届高三第三次学情调查数学(理)试题(含附加题) WORD版含答案.doc
  • 江西省重点高中2022学年高一数学上学期第三次月考试题.docx江西省重点高中2022学年高一数学上学期第三次月考试题.docx
  • 湖北省武汉市汉阳一中2021届高三下学期6月全国高校统一招生考试仿真模拟(六)数学试卷 WORD版含答案.doc湖北省武汉市汉阳一中2021届高三下学期6月全国高校统一招生考试仿真模拟(六)数学试卷 WORD版含答案.doc
  • 江苏省淮安市六校联盟2020届高三数学第三次学情调查试题理202005140198.doc江苏省淮安市六校联盟2020届高三数学第三次学情调查试题理202005140198.doc
  • 江西省重点高中2014-2015学年高二上学期第三次月考 数学理 WORD版含答案.doc江西省重点高中2014-2015学年高二上学期第三次月考 数学理 WORD版含答案.doc
  • 江苏省淮安市六校联盟2020届高三数学第三次学情调查试题文.doc江苏省淮安市六校联盟2020届高三数学第三次学情调查试题文.doc
  • 江苏省淮安市六校联盟2020届高三数学第三次学情调查试题 理.doc江苏省淮安市六校联盟2020届高三数学第三次学情调查试题 理.doc
  • 江西省重点中学(赣中南五校)2015届高三联合考试最后一卷数学试题 WORD版含答案.doc江西省重点中学(赣中南五校)2015届高三联合考试最后一卷数学试题 WORD版含答案.doc
  • 湖北省武汉市汉阳一中2016高三2月调考模拟考试数学理试卷 WORD版含答案.doc湖北省武汉市汉阳一中2016高三2月调考模拟考试数学理试卷 WORD版含答案.doc
  • 江西省重点中学联盟2021-2022学年高二上学期第一次月考数学试题 WORD版含答案.doc江西省重点中学联盟2021-2022学年高二上学期第一次月考数学试题 WORD版含答案.doc
  • 江西省重点中学盟校2023届高三数学(理)下学期第二次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(理)下学期第二次联考试题(Word版附解析).docx
  • 江西省重点中学盟校2023届高三数学(理)下学期第一次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(理)下学期第一次联考试题(Word版附解析).docx
  • 江西省重点中学盟校2023届高三数学(文)下学期第二次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(文)下学期第二次联考试题(Word版附解析).docx
  • 湖北省武汉市汉铁高级中学2015届高三5月周练数学(理)试题(2015年5月2日) WORD版含答案.doc湖北省武汉市汉铁高级中学2015届高三5月周练数学(理)试题(2015年5月2日) WORD版含答案.doc
  • 江西省重点中学盟校2023届高三数学(文)下学期第一次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(文)下学期第一次联考试题(Word版附解析).docx
  • 湖北省武汉市汉铁高级中学2015届高三5月周练数学(文)试题(2015年5月2日) WORD版含答案.doc湖北省武汉市汉铁高级中学2015届高三5月周练数学(文)试题(2015年5月2日) WORD版含答案.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1