分享
分享赚钱 收藏 举报 版权申诉 / 6

类型全国统考2023版高考数学大一轮复习第10章圆锥曲线与方程第2讲双曲线2备考试题文含解析2023032714.docx

  • 上传人:a****
  • 文档编号:338608
  • 上传时间:2025-11-27
  • 格式:DOCX
  • 页数:6
  • 大小:148.76KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    全国 统考 2023 高考 数学 一轮 复习 10 圆锥曲线 方程 双曲线 备考 试题 解析 2023032714
    资源描述:

    1、第十章圆锥曲线与方程第二讲双曲线1.2020浙江,8,4分已知点O(0,0),A(-2,0),B(2,0).设点P满足|PA|-|PB|=2,且P为函数y=34-x2图象上的点,则|OP|=()A.222B.4105C.7D.102.2021大同市调研测试已知双曲线C与抛物线x2=8y有共同的焦点F,且点F到双曲线C的渐近线的距离等于1,则双曲线C的方程为()A.y23-x2=1 B.x23-y2=1C.y25-x2=1 D.y2-x25=13.2021郑州名校联考第一次调研已知双曲线x2a2-y2b2=1(a0,b0)的渐近线与圆(x-1)2+y2=sin2130相切,则该双曲线的离心率e等

    2、于()A.1sin50B.1cos50C.2sin 50D.2cos 504.2021四省八校联考若P是双曲线x2-y2=1上一点,以线段PO(O为坐标原点)为直径的圆与该双曲线的两条渐近线分别交于不同于原点的A,B两点,则四边形PAOB的面积为()A.13B.12C.1D.25.2020陕西省部分学校摸底检测设双曲线x24-y23=1的左、右焦点分别为F1,F2,过F1的直线l交双曲线左支于A,B两点,则|AF2|+|BF2|的最小值为()A.13B.12C.11D.106.2020南昌市测试圆C:x2+y2-10y+16=0上有且仅有两点到双曲线x2a2-y2b2=1(a0,b0)的一条渐

    3、近线的距离为1,则该双曲线的离心率的取值范围是()A.(2,5)B.(53,52)C.(54,52)D.(5,2+1)7.2020江西红色七校第一次联考双曲线C:x2-y23=1的左、右焦点分别为F1,F2,点P在C上且tanF1PF2=43,O为坐标原点,则|OP|=.8.2021安徽省示范高中联考已知点F为双曲线C:x2a2-y2b2=1(a0,b0)的右焦点,直线y=kx,k33,3与双曲线C交于A,B两点,若AFBF,则该双曲线的离心率的取值范围是()A.2,3+1B.2,2+6C.2,3+1D.2,2+69.2021江西九江三校联考已知双曲线x2a2-y2b2=1(a0,b0)的离心

    4、率为2,F1,F2分别是双曲线的左、右焦点,M(-a,0),N(0,b),点P为线段MN上的动点,当PF1PF2取得最小值和最大值时,PF1F2的面积分别为S1,S2,则S2S1=()A.4B.8C.23D.4310.2021河南省名校第一次联考已知F1,F2分别为双曲线x2a2-y2b2=1(a0,b0)的左、右焦点,过F1(-c,0)作x轴的垂线交双曲线于A,B两点,若F1AF2的平分线过点M(-13c,0),则双曲线的离心率为()A.2B.2C.3D.311.2020福州适应性测试已知双曲线C:x2a2-y2b2=1(a0,b0)的一条渐近线方程为x-2y=0,A,B是C上关于原点对称的

    5、两点,M是C上异于A,B的动点,直线MA,MB的斜率分别为k1,k2,若1k12,则k2的取值范围为()A.18,14B.14,12C.-14,-18D.-12,-1412.2020洛阳市第一次联考已知双曲线C:x2a2-y2b2=1(a0,b0)的左、右焦点分别为F1(-c,0),F2(c,0),A,B是圆(x+c)2+y2=4c2与双曲线C位于x轴上方的两个交点,且F1AF2B,则双曲线C的离心率为()A.2+73B.4+73C.3+174D.5+17413.2020惠州市二调新定义题我们把焦点相同、离心率互为倒数的椭圆和双曲线称为一对“相关曲线”.已知F1,F2是一对相关曲线的焦点,P是

    6、椭圆和双曲线在第一象限的交点,当F1PF2=60时,这一对相关曲线中双曲线的离心率是()A.3B.2C.233D.214.2021河北衡水中学联考情境创新小明同学发现家中墙壁上灯光的边界类似双曲线的一支,D为其顶点,如图10-2-1所示.小明经过测量得知,该双曲线的渐近线相互垂直,且AB与DC垂直,AB=80 cm,DC=20 cm,若该双曲线的焦点位于直线DC上,则点D下方的焦点距点Dcm.图10-2-115.递进型在平面直角坐标系中,若双曲线的渐近线方程为2xy=0,且该双曲线经过点(54,32),则该双曲线的标准方程为,焦点坐标为.答 案第十章圆锥曲线与方程第二讲双曲线1.D由|PA|-

    7、|PB|=20,b0),则其渐近线方程为y=abx,即axby=0,点F(0,2)到渐近线的距离为2ba2+b2=2bc=1,所以b=1,所以a2=c2-b2=3,故双曲线的方程为y23-x2=1,故选A.3.B根据对称性,取双曲线的一条渐近线bx-ay=0.圆(x-1)2+y2=sin2130的圆心为(1,0),半径r=sin 130=sin 50.因为渐近线与圆(x-1)2+y2=sin2130相切,所以ba2+b2=sin 50,所以b2a2=sin250cos250.所以e=ca=1+b2a2=1+sin250cos250=1cos50.故选B.4.B解法一由题意,知该双曲线的渐近线方

    8、程为y=x,所以该双曲线的两条渐近线互相垂直.因为OP为圆的直径,点A,B在圆上,所以OAP=OBP=90,所以四边形PAOB为矩形.设点P(x1,y1),则点P到两条渐近线的距离分别为|x1-y1|2,|x1+y1|2,所以四边形PAOB的面积为|x12-y12|2.又点P(x1,y1)在双曲线x2-y2=1上,所以x12-y12=1,所以S四边形PAOB=|x12-y12|2=12,故选B.解法二如图D 10-2-1,由题意,点P为双曲线上任意一点,不妨设点P为双曲线的右顶点,即 P(1,0).易知双曲线的渐近线方程为y=x,所以该双曲线的两条渐近线互相垂直.因为OP为圆的直径,点A,B在

    9、圆上,所以OAP=OBP=90.又点P(1,0)到两条渐近线的距离均为22,所以四边形PAOB为正方形,所以S四边形PAOB=(22)2=12,故选B.图D 10-2-15.C由题意得双曲线的实半轴长a=2,虚半轴长b=3.根据双曲线的定义得|AF2|-|AF1|=2a=4,|BF2|-|BF1|=2a=4,+得|AF2|+|BF2|=|AF1|+|BF1|+8=|AB|+8.易得|AB|min=2b2a=3,所以|AF2|+|BF2|的最小值为11,故选C.6.C不妨设该渐近线经过第二、四象限,则该渐近线的方程为bx+ay=0.因为圆C:x2+(y-5)2=9,所以圆C的圆心为(0,5),半

    10、径为3,所以2|5a|a2+b24,结合a2+b2=c2,得54ca0,b0)的一条渐近线方程为x-2y=0,可得ba=12,即a=2b,则双曲线的方程为x24b2-y2b2=1(b0).设A(x1,y1),M(x0,y0),则B(-x1,-y1),因为A,B,M在双曲线上,所以x124b2-y12b2=1,x024b2-y02b2=1,两式相减得(x1+x0)(x1-x0)4b2=(y1+y0)(y1-y0)b2,所以14=(y1+y0)(y1-y0)(x1+x0)(x1-x0),即k1k2=14.因为1k12,所以k2=14k118,14.故选A.12.C如图D 10-2-2,连接BF1,

    11、AF2,由双曲线的定义知,|AF2|-|AF1|=2a,|BF1|-|BF2|=2a,由|BF1|=|AF1|=2c,可得|AF2|=2a+2c,|BF2|=2c-2a,在AF1F2中,由余弦定理可得cosAF1F2=4c2+4c2-(2a+2c)222c2c=c2-2ac-a22c2,在BF1F2中,由余弦定理可得cosBF2F1=4c2+(2c-2a)2-4c222c(2c-2a)=c-a2c,由F1AF2B,可得BF2F1+AF1F2=,则有cosBF2F1+cosAF1F2=0,即c2-2ac-a22c2+c-a2c=0,整理得2c2-3ac-a2=0,可化为2e2-3e-1=0,解得

    12、e=3+174或e=3-174(舍去),所以双曲线C的离心率为3+174.故选C.图D 10-2-213.A设椭圆、双曲线的离心率分别为e1,e2,椭圆的长半轴长为a1,椭圆的半焦距为c,双曲线的实半轴长为a2,|PF1|=x,|PF2|=y,xy.由椭圆、双曲线的定义得x+y=2a1,x-y=2a2,x=a1+a2,y=a1-a2.在PF1F2中,由余弦定理得cosF1PF2=x2+y2-(2c)22xy=cos 60,2(a12+a22)-4c22(a12-a22)=12,a12+3a22=4c2.e1e2=ca1ca2=1,c2=a1a2,a12+3a22=4a1a2,即(a1-a2)(

    13、a1-3a2)=0,a1=3a2,3a22=c2,e2=ca2=3,即双曲线的离心率为3.故选A.14.30(2-1)将题图逆时针旋转90,并以DC所在直线为x轴,点D左侧的点O为坐标原点,与DC垂直的直线为y轴建立平面直角坐标系,如图D 10-2-3所示.设该双曲线的方程为x2a2-y2b2=1(a0,b0).因为该双曲线的渐近线相互垂直,所以a=b.由题意知,(a+20)2a2-402b2=1,解得a=b=30,c=302,故点D下方的焦点距点D 30(2-1)cm.图D 10-2-315.x2-y24=1(5,0)解法一因为点(54,32)在渐近线y=2x的下方,所以双曲线的焦点在x轴上,设双曲线的标准方程为x2a2-y2b2=1(a0,b0),由双曲线的渐近线方程为2xy=0,知 b=2a,由b=2a,2516a2-94b2=1,得a2=1,b2=4,所以双曲线的标准方程为x2-y24=1,焦点坐标为(5,0).解法二由双曲线的渐近线方程为2xy=0,设双曲线的方程为4x2-y2=,再将(54,32)代入双曲线的方程,得=4,所以双曲线的标准方程为x2-y24=1,焦点坐标为(5,0).

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:全国统考2023版高考数学大一轮复习第10章圆锥曲线与方程第2讲双曲线2备考试题文含解析2023032714.docx
    链接地址:https://www.ketangku.com/wenku/file-338608.html
    相关资源 更多
  • 江苏省淮安市南陈集中学2014-2015学年高二数学1月调查测试试题(扫描版)苏教版.doc江苏省淮安市南陈集中学2014-2015学年高二数学1月调查测试试题(扫描版)苏教版.doc
  • 湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 理 试题 WORD版含答案.doc湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 理 试题 WORD版含答案.doc
  • 湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 文 试题 WORD版含答案.doc湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 文 试题 WORD版含答案.doc
  • 江苏省淮安市南陈集中学2014-2015学年高一上学期12月调考数学试卷 WORD版含解析.doc江苏省淮安市南陈集中学2014-2015学年高一上学期12月调考数学试卷 WORD版含解析.doc
  • 江西省金溪县第一中学高一数学上学期第二次12月月考试题.docx江西省金溪县第一中学高一数学上学期第二次12月月考试题.docx
  • 湖北省武汉市江夏区2012-2013学年高一上学期期中联考数学试题 WORD版含答案.doc湖北省武汉市江夏区2012-2013学年高一上学期期中联考数学试题 WORD版含答案.doc
  • 湖北省武汉市江夏一中2019-2020学年高二数学下学期3月月考试题(含解析).doc湖北省武汉市江夏一中2019-2020学年高二数学下学期3月月考试题(含解析).doc
  • 湖北省武汉市汉阳区2015_2016学年七年级数学上学期期中试卷新人教版.doc湖北省武汉市汉阳区2015_2016学年七年级数学上学期期中试卷新人教版.doc
  • 湖北省武汉市汉阳一中、江夏一中2017-2018学年高一10月联考数学试卷 WORD版含答案.doc湖北省武汉市汉阳一中、江夏一中2017-2018学年高一10月联考数学试卷 WORD版含答案.doc
  • 江西省重点高中2022学年高二数学上学期第三次月考试题 理.docx江西省重点高中2022学年高二数学上学期第三次月考试题 理.docx
  • 江西省重点高中2022学年高二数学上学期第三次月考试题 文.docx江西省重点高中2022学年高二数学上学期第三次月考试题 文.docx
  • 湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(六).doc湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(六).doc
  • 湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(五).doc湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(五).doc
  • 江苏省淮安市六校联盟2020届高三第三次学情调查数学(理)试题(含附加题) WORD版含答案.doc江苏省淮安市六校联盟2020届高三第三次学情调查数学(理)试题(含附加题) WORD版含答案.doc
  • 江西省重点高中2022学年高一数学上学期第三次月考试题.docx江西省重点高中2022学年高一数学上学期第三次月考试题.docx
  • 湖北省武汉市汉阳一中2021届高三下学期6月全国高校统一招生考试仿真模拟(六)数学试卷 WORD版含答案.doc湖北省武汉市汉阳一中2021届高三下学期6月全国高校统一招生考试仿真模拟(六)数学试卷 WORD版含答案.doc
  • 江苏省淮安市六校联盟2020届高三数学第三次学情调查试题理202005140198.doc江苏省淮安市六校联盟2020届高三数学第三次学情调查试题理202005140198.doc
  • 江西省重点高中2014-2015学年高二上学期第三次月考 数学理 WORD版含答案.doc江西省重点高中2014-2015学年高二上学期第三次月考 数学理 WORD版含答案.doc
  • 江苏省淮安市六校联盟2020届高三数学第三次学情调查试题文.doc江苏省淮安市六校联盟2020届高三数学第三次学情调查试题文.doc
  • 江苏省淮安市六校联盟2020届高三数学第三次学情调查试题 理.doc江苏省淮安市六校联盟2020届高三数学第三次学情调查试题 理.doc
  • 江西省重点中学(赣中南五校)2015届高三联合考试最后一卷数学试题 WORD版含答案.doc江西省重点中学(赣中南五校)2015届高三联合考试最后一卷数学试题 WORD版含答案.doc
  • 湖北省武汉市汉阳一中2016高三2月调考模拟考试数学理试卷 WORD版含答案.doc湖北省武汉市汉阳一中2016高三2月调考模拟考试数学理试卷 WORD版含答案.doc
  • 江西省重点中学联盟2021-2022学年高二上学期第一次月考数学试题 WORD版含答案.doc江西省重点中学联盟2021-2022学年高二上学期第一次月考数学试题 WORD版含答案.doc
  • 江西省重点中学盟校2023届高三数学(理)下学期第二次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(理)下学期第二次联考试题(Word版附解析).docx
  • 江西省重点中学盟校2023届高三数学(理)下学期第一次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(理)下学期第一次联考试题(Word版附解析).docx
  • 江西省重点中学盟校2023届高三数学(文)下学期第二次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(文)下学期第二次联考试题(Word版附解析).docx
  • 湖北省武汉市汉铁高级中学2015届高三5月周练数学(理)试题(2015年5月2日) WORD版含答案.doc湖北省武汉市汉铁高级中学2015届高三5月周练数学(理)试题(2015年5月2日) WORD版含答案.doc
  • 江西省重点中学盟校2023届高三数学(文)下学期第一次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(文)下学期第一次联考试题(Word版附解析).docx
  • 湖北省武汉市汉铁高级中学2015届高三5月周练数学(文)试题(2015年5月2日) WORD版含答案.doc湖北省武汉市汉铁高级中学2015届高三5月周练数学(文)试题(2015年5月2日) WORD版含答案.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1