2021-2022高中数学人教版必修1教案:2-1-2指数函数及其性质 (系列三) WORD版含答案.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021-2022高中数学人教版必修1教案:2-1-2指数函数及其性质 系列三 WORD版含答案 2021 2022 高中 学人 必修 教案 指数函数 及其 性质 系列 WORD 答案
- 资源描述:
-
1、2.1.2 指数函数及其性质(三)(一)教学目标1知识与技能:(1)熟练掌握指数函数概念、图象、性质;(2)掌握指数形式的函数定义域、值域的求法,以及单调性、奇偶性判断;(3)培养学生数学应用意识2过程与方法:(1)让学生了解数学来自生活,数学又服务于生活的哲理;(2)培养学生观察问题,分析问题的能力.3情感、态度与价值观(1) 认识从特殊到一般的研究方法.(2) 了解数学在生产实际中的应用.(二)教学重点、难点1教学重点:指数形式的函数图象、性质的应用.2教学难点:判断单调性.(三)教学方法 启发学生运用证明函数单调性的基本步骤对指数形式的复合函数的单调性进行证明,但应在变形这一关键步骤帮助
2、学生总结、归纳有关指数形式的函数变形技巧,以利于下一步判断.(四)教学过程教学环节教学内容师生互动设计意图复习引入 回顾1.指数函数的定义、图象、性质.2.函数的单调性、奇偶性的定义,及其判定方法.3. 复合函数单调性的判定方法.老师提问学生回答复合函数y=fg(x)是由函数u=g(x)和y=f(u)构成的,函数u=g(x)的值域应是函数y=f(u)的定义域的子集.在复合函数y=fg(x)中,x是自变量,u是中间变量.当u=g(x)和y=f(u)在给定区间上增减性相同时,复合函数y=fg(x)是增函数;增减性相反时,y=fg(x)是减函数.为学习新课作好了知识上的准备.应用举例例1 当a1时,
3、判断函数y=是奇函数.例2 求函数y=()的单调区间,并证明之.课堂练习1. 求函数y=3的单调区间和值域.2. 设a是实数,试证明对于任意a,为增函数;例1师:你觉得应该如何去判断一个函数的奇偶性?(生口答,师生共同归纳总结)方法引导:判断一个函数奇偶性的一般方法和步骤是:(1)求出定义域,判断定义域是否关于原点对称.(2)若定义域关于原点不对称,则该函数是非奇非偶函数.(3)若所讨论的函数的定义域关于原点对称,进而讨论f(x)和f(x)之间的关系.若f(x)=f(x),则函数f(x)是定义域上的偶函数;若f(x)=f(x),则函数f(x)是定义域上的奇函数;若f(x)=f(x)且f(x)=
4、f(x),则函数f(x)在定义域上既是奇函数又是偶函数.师:请同学们根据以上方法和步骤,完成例题1.(生完成引发的训练题,通过实物投影仪,交流各自的解答,并组织学生评析,师最后投影显示规范的解答过程,规范学生的解题)证明:由ax10,得x0,故函数定义域为x|x0,易判断其定义域关于原点对称.又f(x)=f(x),f(x)=f(x).函数y=是奇函数.例2师:证明函数单调性的方法是什么?(生口答,师生共同归纳总结)方法引导:(1)在区间D上任取x1x2.(2)作差判断f(x1)与f(x2)的大小:化成因式的乘积,从x1x2出发去判断.(3)下结论:如果f(x1)f(x2),则函数f(x)在区间
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-461439.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
2022高考语文一轮复习课件:第3板块 现代文阅读 专题4 散文阅读 考点4 探究文本意蕴与情感体验 .ppt
