分享
分享赚钱 收藏 举报 版权申诉 / 9

类型专题03 导数多选题 (解析版).docx

  • 上传人:a****
  • 文档编号:827927
  • 上传时间:2025-12-15
  • 格式:DOCX
  • 页数:9
  • 大小:477.52KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    专题03 导数多选题 解析版 专题 03 导数 选题 解析
    资源描述:

    1、专题03 导函数多选题1.已知定义在上的函数的导函数为,且,则下列判断中正确的是( )ABCD【答案】CD【解析】令,则,因为,所以在上恒成立,因此函数在上单调递减,因此,即,即,故A错;又,所以,所以在上恒成立,因为,所以,故B错;又,所以,即,故C正确;又,所以,即,故D正确;故选:CD.2.【题源】若函数有两个极值点则的值可以为( )A0B1C2D3【答案】AB【解析】因为函数有两个极值点则与轴有两个交点,即解得故满足条件的有故选:3.【题源】设为函数的导函数,已知,则下列结论不正确的是( )A在单调递增B在单调递减C在上有极大值D在上有极小值【答案】ABC 【解析】由x2f(x)+xf

    2、(x)lnx得x0,则xf(x)+f(x),即xf(x),设g(x)xf(x),即g(x)0得x1,由g(x)0得0x1,即在单调递增,在单调递减,即当x1时,函数g(x)xf(x)取得极小值g(1)f(1),故选:ABC4.【题源】已知函数的定义域为,则( )A为奇函数B在上单调递增C恰有4个极大值点D有且仅有4个极值点【答案】 BD【解析】因为的定义域为,所以是非奇非偶函数,当时,则在上单调递增.显然,令,得,分别作出,在区间上的图象,由图可知,这两个函数的图象在区间上共有4个公共点,且两图象在这些公共点上都不相切,故在区间上的极值点的个数为4,且只有2个极大值点.故选:BD.5.【题源】

    3、对于函数,下列说法正确的是( )A在处取得极大值B有两个不同的零点CD若在上恒成立,则【答案】 ACD【解析】函数定义域为,,当时,0,单调递增,当时,单调递减,所以在时取得极大值,A正确;,当时,当时,因此只有一个零点,B错误;显然,因此,又,设,则, 时,单调递减,而,即,即,C正确;令(),则,易知当时,时,在时取得极大值也是最大值,在上恒成立,则,D正确故选:ACD6.【题源】定义在上的函数的导函数为,且对恒成立.下列结论正确的是( )AB若,则CD若,则【答案】 CD【解析】设函数,则因为,所以,故在上单调递减,从而,整理得,,故A错误,C正确. 当时,若,因为在上单调递减,所以即,

    4、即.故D正确,从而B不正确.即结论正确的是CD,故选:CD.7.【题源】若函数在上有最大值,则a的取值可能为()ABCD【答案】 ABC【解析】令,得,当时,;当或时,则的增区间为,减区间为, 从而在处取得极大值,由,得,解得或,又在上有最大值,所以,即,故选ABC.8.【题源】设函数,若有4个零点,则的可能取值有()A1B2C3D4【答案】 BCD【解析】因为函数定义域为,且,所以函数为偶函数,故函数有4个零点等价于时, 有2个零点,当时,则当,当由得,当时,当时,如图:所以有极小值,要使函数有个零点,只需即可,即,解得,所以可取,故选BCD.9.【题源】已知函数有两个零点,且,则下列说法正

    5、确的是( )ABCD有极小值点,且【答案】 ABD【解析】由题意,函数,则,当时,在上恒成立,所以函数单调递增,不符合题意;当时,令,解得,令,解得,所以函数在上单调递减,在上单调递增,因为函数有两个零点且,则,且,所以,解得,所以A项正确;又由,取,则,所以,所以,所以B正确;由,则,但不能确定,所以C不正确;由函数在上单调递减,在上单调递增,所以函数的极小值点为,且,所以D正确;故选ABD.10.【题源】如下的四个命题中真命题的标号为( )A已知实数,满足,则B若,则的取值范围是C如果,那么D若,则不等式一定成立【答案】 ABCD【解析】对A,由,再由,得:,即,故A正确;对B,故B正确;对C,由,则,当时,在上单调递减,故C正确;对D,要证不等式成立,等价于证明,显然成立,故D正确.故选:ABCD.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:专题03 导数多选题 (解析版).docx
    链接地址:https://www.ketangku.com/wenku/file-827927.html
    相关资源 更多
  • 专题07 冠词(原卷版).docx专题07 冠词(原卷版).docx
  • 专题07 写作(原卷版).docx专题07 写作(原卷版).docx
  • 专题07 写作 -2023-2024学年四年级英语上册期中专项复习(人教PEP版).docx专题07 写作 -2023-2024学年四年级英语上册期中专项复习(人教PEP版).docx
  • 专题07 全面依法治国(讲义)(解析版).docx专题07 全面依法治国(讲义)(解析版).docx
  • 专题07 全面依法治国(讲义)(原卷版).docx专题07 全面依法治国(讲义)(原卷版).docx
  • 专题07 全等三角形旋转、一线三等角模型(重点突围)(解析版).docx专题07 全等三角形旋转、一线三等角模型(重点突围)(解析版).docx
  • 专题07 全等三角形旋转、一线三等角模型(重点突围)(原卷版).docx专题07 全等三角形旋转、一线三等角模型(重点突围)(原卷版).docx
  • 专题07 全等三角形中的倍长中线模型(解析版).docx专题07 全等三角形中的倍长中线模型(解析版).docx
  • 专题07 全等三角形中的倍长中线模型(原卷版).docx专题07 全等三角形中的倍长中线模型(原卷版).docx
  • 专题07 倍半角模型(知识精讲)-冲刺2021年中考几何专项复习.docx专题07 倍半角模型(知识精讲)-冲刺2021年中考几何专项复习.docx
  • 专题07 倍半角模型巩固练习(提优)-冲刺2021年中考几何专项复习(解析版).docx专题07 倍半角模型巩固练习(提优)-冲刺2021年中考几何专项复习(解析版).docx
  • 专题07 倍半角模型巩固练习(提优)-冲刺2021年中考几何专项复习(原卷版).docx专题07 倍半角模型巩固练习(提优)-冲刺2021年中考几何专项复习(原卷版).docx
  • 专题07 倍半角模型巩固练习(基础)-冲刺2021年中考几何专项复习(解析版).docx专题07 倍半角模型巩固练习(基础)-冲刺2021年中考几何专项复习(解析版).docx
  • 专题07 伴性遗传与人类遗传病(解析版).docx专题07 伴性遗传与人类遗传病(解析版).docx
  • 专题07 伴性遗传与人类遗传病(原卷版).docx专题07 伴性遗传与人类遗传病(原卷版).docx
  • 专题07 传送带模型-2022-2023学年高中物理同步练习分类专题教案(人教版2019必修第一册).docx专题07 传送带模型-2022-2023学年高中物理同步练习分类专题教案(人教版2019必修第一册).docx
  • 专题07 仿用、变化句式(导学案)-2023年新高考一轮复习讲堂之语言文字运用.docx专题07 仿用、变化句式(导学案)-2023年新高考一轮复习讲堂之语言文字运用.docx
  • 专题07 任务型阅读(回答问题)12篇(名校模拟 地区真题)-冲刺2023年中考英语必考题型终极预测(重庆专用).docx专题07 任务型阅读(回答问题)12篇(名校模拟 地区真题)-冲刺2023年中考英语必考题型终极预测(重庆专用).docx
  • 专题07 代词和限定词【知识梳理】-【口袋书】2024年中考英语一轮复习知识清单(全国通用)(解析版).docx专题07 代词和限定词【知识梳理】-【口袋书】2024年中考英语一轮复习知识清单(全国通用)(解析版).docx
  • 专题07 代词和限定词【知识梳理】-【口袋书】2024年中考英语一轮复习知识清单(全国通用)(原卷版).docx专题07 代词和限定词【知识梳理】-【口袋书】2024年中考英语一轮复习知识清单(全国通用)(原卷版).docx
  • 专题07 介词-2023年高考英语冲刺复习考点通关大全.docx专题07 介词-2023年高考英语冲刺复习考点通关大全.docx
  • 专题07 人口专题(讲义)-【高频考点解密】2023年高考地理二轮专题复习课件 讲义 分层训练(浙江专用)(原卷版).docx专题07 人口专题(讲义)-【高频考点解密】2023年高考地理二轮专题复习课件 讲义 分层训练(浙江专用)(原卷版).docx
  • 专题07 人口专题(分层训练)-【高频考点解密】2023年高考地理二轮复习课件 讲义 分层训练(浙江专用)(解析版).docx专题07 人口专题(分层训练)-【高频考点解密】2023年高考地理二轮复习课件 讲义 分层训练(浙江专用)(解析版).docx
  • 专题07 二项式定理【艺体生专供选择填空抢分专题】备战2024年高考高频考点题型精讲 精练(新高考通用)-解析版.docx专题07 二项式定理【艺体生专供选择填空抢分专题】备战2024年高考高频考点题型精讲 精练(新高考通用)-解析版.docx
  • 专题07 二次方程(解析版).docx专题07 二次方程(解析版).docx
  • 专题07 二次方程(原卷版).docx专题07 二次方程(原卷版).docx
  • 专题07 二次函数的综合(中考数学特色专题训练卷)(解析版).docx专题07 二次函数的综合(中考数学特色专题训练卷)(解析版).docx
  • 专题07 二次函数的综合(中考数学特色专题训练卷)(原卷版).docx专题07 二次函数的综合(中考数学特色专题训练卷)(原卷版).docx
  • 专题07 二次函数与直角三角形有关问题(专项训练)(解析版).docx专题07 二次函数与直角三角形有关问题(专项训练)(解析版).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1