2021-2022高中数学人教版必修2教案:3-2-1直线的点斜式方程 (系列四) WORD版含答案.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021-2022高中数学人教版必修2教案:3-2-1直线的点斜式方程 系列四 WORD版含答案 2021 2022 高中 学人 必修 教案 直线 点斜式 方程 系列 WORD 答案
- 资源描述:
-
1、3.2.1 直线的点斜式方程一、教材分析 直线方程的点斜式给出了根据已知一个点和斜率求直线方程的方法和途径.在求直线的方程中,直线方程的点斜式是基本的,直线方程的斜截式、两点式都是由点斜式推出的.从一次函数y=kxb(k0)引入,自然地过渡到本节课想要解决的问题求直线的方程问题.在引入过程中,要让学生弄清直线与方程的一一对应关系,理解研究直线可以从研究方程及方程的特征入手. 在推导直线方程的点斜式时,根据直线这一结论,先猜想确定一条直线的条件,再根据猜想得到的条件求出直线的方程.二、教学目标1知识与技能(1)理解直线方程的点斜式、斜截式的形式特点和适用范围;(2)能正确利用直线的点斜式、斜截式
2、公式求直线方程;(3)体会直线的斜截式方程与一次函数的关系.2过程与方法在已知直角坐标系内确定一条直线的几何要素直线上的一点和直线的倾斜角的基础上,通过师生探讨,得出直线的点斜式方程,学生通过对比理解“截距”与“距离”的区别.3情态与价值观通过让学生体会直线的斜截式方程与一次函数的关系,进一步培养学生数形结合的思想,渗透数学中普遍存在相互联系、相互转化等观点,使学生能用联系的观点看问题.三、教学重点与难点教学重点:引导学生根据直线这一结论探讨确定一条直线的条件,并会利用探讨出的条件求出直线的方程.教学难点:在理解的基础上掌握直线方程的点斜式的特征及适用范围.四、课时安排1课时五、教学设计(一)
3、导入新课思路1.方程y=kxb与直线l之间存在着什么样的关系?让学生边回答,教师边适当板书.它们之间存在着一一对应关系,即(1)直线l上任意一点P(x1,y1)的坐标是方程y=kxb的解.(2)(x1,y1)是方程y=kx+b的解点P(x1,y1)在直线l上.这样好像直线能用方程表示,这节课我们就来学习、研究这个问题直线的方程(宣布课题).思路2.在初中,我们已经学习过一次函数,并接触过一次函数的图象,现在,请同学们作一下回顾: 一次函数y=kx+b的图象是一条直线,它是以满足y=kx+b的每一对x、y的值为坐标的点构成的.由于函数式y=kx+b也可以看作二元一次方程,所以我们可以说,这个方程
4、的解和直线上的点也存在这样的对应关系.这节课我们就来学习直线的方程(宣布课题).(二)推进新课、新知探究、提出问题如果把直线当做结论,那么确定一条直线需要几个条件?如何根据所给条件求出直线的方程?已知直线l的斜率k且l经过点P1(x1,y1),如何求直线l的方程?方程导出的条件是什么?若直线的斜率k不存在,则直线方程怎样表示?k=与y-y1=k(x-x1)表示同一直线吗?已知直线l的斜率k且l经过点(,),如何求直线l的方程?讨论结果:确定一条直线需要两个条件:a.确定一条直线只需知道k、b即可;b.确定一条直线只需知道直线l上两个不同的已知点.设P(x,y)为l上任意一点,由经过两点的直线的
5、斜率公式,得k=,化简,得yy1=k(xx1).方程导出的条件是直线l的斜率k存在.a.x=0;b.x=x1.启发学生回答:方程k=表示的直线l缺少一个点P1(x1,y1),而方程yy1=k(xx1)表示的直线l才是整条直线.y=kx+b.(三)应用示例思路1例1 一条直线经过点P1(-2,3),倾斜角=45,求这条直线方程,并画出图形.图1解:这条直线经过点P1(-2,3),斜率是k=tan45=1.代入点斜式方程,得y-3=x+2,即x-y+5=0,这就是所求的直线方程,图形如图1所示.点评:此例是点斜式方程的直接运用,要求学生熟练掌握,并具备一定的作图能力.变式训练 求直线y=-(x-2
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-461940.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
29.【审题】如何区分题目中“结合原文”和“结合实际”?.pdf
