分享
分享赚钱 收藏 举报 版权申诉 / 7

类型2021-2022高中数学人教版必修5教案:2-4等比数列 (系列四) WORD版含答案.doc

  • 上传人:a****
  • 文档编号:462141
  • 上传时间:2025-12-08
  • 格式:DOC
  • 页数:7
  • 大小:52KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2021-2022高中数学人教版必修5教案:2-4等比数列 系列四 WORD版含答案 2021 2022 高中 学人 必修 教案 等比数列 系列 WORD 答案
    资源描述:

    1、2.4 等比数列教学目标:掌握等比数列的定义,理解等比数列的通项公式及推导;培养学生的发现意识,提高学生创新意识,提高学生的逻辑推理能力,增强学生的应用意识.教学重点:等比数列的定义及通项公式.教学难点:灵活应用等比数列的定义式及通项公式解决一些相关问题.教学过程:.复习回顾前面几节课,我们共同探讨了等差数列,现在我们再来回顾一下等差数列的主要内容.讲授新课下面我们来看这样几个数列,看其又有何共同特点?1,2,4,8,16,263;5,25,125,625,;1,;仔细观察数列,寻其共同特点.对于数列,an2n1;2(n2)对于数列,an5n;5(n2)对于数列,an(1)n+1; (n2)共

    2、同特点:从第二项起,第一项与前一项的比都等于同一个常数.也就是说,这些数列从第二项起,每一项与前一项的比都具有“相等”的特点.1.定义等比数列:一般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母q表示(q0),即:anan1q(q0)如:数列,都是等比数列,它们的公比依次是2,5,.与等差数列比较,仅一字之差.总之,若一数列从第二项起,每一项与其前一项之“差”为常数,则为等差数列,之“比”为常数,则为等比数列,此常数称为“公差”或“公比”.Z,xx,k.Com注意(1)公差“d”可为0,(2)公比“q”不

    3、可为0.等比数列的通项公式又如何呢?2.等比数列的通项公式请同学们想想等差数列通项公式的推导过程,试着推一下等比数列的通项公式.解法一:由定义式可得:a2a1q,a3a2q(a1q)qa1q2,a4a3q(a1q2)qa1q3,anan1qa1qn1(a1,q0),n1时,等式也成立,即对一切nN*成立.解法二:由定义式得: (n1)个等式若将上述n1个等式相乘,便可得:qn1即:ana1qn1(n2)当n1时,左a1,右a1,所以等式成立,等比数列通项公式为:ana1qn1(a1,q0)如:数列,an12n12n1(n64)数列:an55n15n,数列:an1()n1(1)n1与等差数列比较

    4、,两者均可用归纳法求得通项公式.或者,等差数列是将由定义式得到的n1个式子相“加”,便可求得通项公式;而等比数列则需将由定义式得到的n1个式子相“乘”,方可求得通项公式.下面看一些例子:例1培育水稻新品种,如果第一代得到120粒种子,并且从第一代起,由以后各代的每一粒种子都可以得到下一代的120粒种子,到第5代大约可以得到这个新品种的种子多少粒(保留两个有效数字)?分析:下一代的种子数总是上一代种子数的120倍,逐代的种子数可组成一等比数列,然后可用等比数列的有关知识解决题目所要求的问题.解:由题意可得:逐代的种子数可组成一以a1120,q120的等比数列an.由等比数列通项公式可得:ana1

    5、qn1120120n1120na512052.51010.答:到第5代大约可以得到种子2.51010粒.评述:遇到实际问题,首先应仔细分析题意,以准确恰当建立数学模型.例2一个等比数列的第3项与第4项分别是12与18,求它的第1项与第2项.分析:应将已知条件用数学语言描述,并联立,然后求得通项公式.解:设这个等比数列的首项是a1,公比是q则:得:q 代入得:a1ana1qn1()n1,a2a1q8.答:这个数列的第1项与第2项分别是和8.评述:要灵活应用等比数列定义式及通项公式.课堂练习课本P48练习1,2,3已知an是无穷等比数列,公比为q.(1)将数列an中的前k项去掉,剩余各项组成一个新

    6、数列,这个数列是等比数列吗?如果是,它的首项和公比各是多少?解:设an为:a1,a2,ak,ak+1,则去掉前k项的数可列为:ak+1,ak+2,an,可知,此数列是等比数列,它的首项为ak+1,公比为q.(2)取出数列an中的所有奇数项,组成一个新的数列,这个数列是等比数列吗?如果是,它的首项和公比各是多少?解:设an为:a1,a2,a3,a2k1,a2k,取出an中的所有奇数项,分别为:a1,a3,a5,a7,a2k1,a2k+1,q2(k1)此数列为等比数列,这个数列的首项是a1,公比为q2.(3)在数列an中,每隔10项取出一项,组成一个新的数列,这个数列是等比数列吗?如果是,它的公比

    7、是多少?解:设数列an为:a1,a2,an,每隔10项取出一项的数可列为:a11,a22,a33,可知,此数列为等比数列,其公式为:q11.评述:注意灵活应用等比数列的定义式和通项公式.课时小结本节课主要学习了等比数列的定义,即:q(q0,q为常数,n2)等比数列的通项公式:ana1qn1(n2)及推导过程.课后作业课本P52习题 1,2,3,4等比数列(一)1已知Sn是数列an的前n项和,Snpn,那么数列an是 ( )A.等比数列B.当p0时为等比数列C.当p0,p1时为等比数列D.不可能为等比数列 2公差不为0的等差数列an中,a2,a3,a6依次成等比数列,则公比等于 ( )A. B.

    8、 C.2 D.33数列an的前n项之和是Snanb(a、b为常数且a0,1),问数列an是等比数列吗?若是,写出通项公式,若不是,说明理由.4已知等比数列x,y,求x,y.5已知数列an是等比数列,首项为a1,公比不等于1,又其中有连续三项分别是一等差数列的第t,k,p项,求数列an的通项公式.6已知数列an为等比数列,a1a310,a4a6,求a4的值.等比数列(一)答案1D 2D3数列an的前n项之和是Snanb(a、b为常数且a0,1),问数列an是等比数列吗?若是,写出通项公式,若不是,说明理由.分析:利用等比数列的定义解题.解:a1S1ab,当n2时,anSnSn1(a1)an又a1

    9、(a1)a0a1若a1ab,即b1时,显然数列an不是等比数列.若a1ab,即b1时,由an(a1)an1(n1),得a(n2)故数列an是等比数列.4x,y5已知数列an是等比数列,首项为a1,公比不等于1,又其中有连续三项分别是一等差数列的第t,k,p项,求数列an的通项公式.分析一:先从等比数列入手解决问题.解法一:设符合题设的等比数列an中的连续三项为am,am+1,am+2,则:am+1amq,am+2am+1q (q为公比)两式相减,得q又am+1am(kt)d,即am+1am(kt)d同理am+2am+1(pk)d(d为公差),故q 所求通项公式为ana1( )n1.分析二:先从等差数列入手解决问题.解法二:设等差数列为bn,公差为d,则由题设知,bt,bk,bp是等比数列an中的连续三项:故q利用等比定理,可得 q,ana1()n1.6已知数列an为等比数列,a1a310,a4a6,求a4的值.分析:要求a4可以先求an,这样求基本量a1和q的值就成了关键,结合条件考虑运用方程思想解决.解:设此数列的公比为q,由已知得:由a10,1q20,得,q3qa18. a4a1q381.评述:本题在求基本量a1和q时,运用方程思想把两个方程相除达到消元的目的,此法应重视.7

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2021-2022高中数学人教版必修5教案:2-4等比数列 (系列四) WORD版含答案.doc
    链接地址:https://www.ketangku.com/wenku/file-462141.html
    相关资源 更多
  • 专题06 机械运动(原卷版)-备战2023年中考物理精选考点专练(知识清单+基础+拔高) .docx专题06 机械运动(原卷版)-备战2023年中考物理精选考点专练(知识清单+基础+拔高) .docx
  • 专题06 机械能和简单机械【考题猜想】(解析版) .docx专题06 机械能和简单机械【考题猜想】(解析版) .docx
  • 专题06 机械能和简单机械【考题猜想】(原卷版) .docx专题06 机械能和简单机械【考题猜想】(原卷版) .docx
  • 专题06 机械能和简单机械【考点清单】(解析版) .docx专题06 机械能和简单机械【考点清单】(解析版) .docx
  • 专题06 机械能与化学能的转化模型 -【常考必刷】 2022中考物理常考计算题(能量的转化效率问题专题)之经典模型培优练习 (解析版).docx专题06 机械能与化学能的转化模型 -【常考必刷】 2022中考物理常考计算题(能量的转化效率问题专题)之经典模型培优练习 (解析版).docx
  • 专题06 机械能与化学能的转化模型 -【常考必刷】 2022中考物理常考计算题(能量的转化效率问题专题)之经典模型培优练习 (原卷版).docx专题06 机械能与化学能的转化模型 -【常考必刷】 2022中考物理常考计算题(能量的转化效率问题专题)之经典模型培优练习 (原卷版).docx
  • 专题06 期末核心考点强化练200道(十七大类)八年级(牛津译林版)(原卷版).docx专题06 期末核心考点强化练200道(十七大类)八年级(牛津译林版)(原卷版).docx
  • 专题06 期末核心考点强化练200道(十七大类)-2023-2024学年八年级上学期期末考点大串讲(牛津译林版)(原卷版).docx专题06 期末核心考点强化练200道(十七大类)-2023-2024学年八年级上学期期末考点大串讲(牛津译林版)(原卷版).docx
  • 专题06 有理数的计算_答案.docx专题06 有理数的计算_答案.docx
  • 专题06 文言文阅读(原卷版).docx专题06 文言文阅读(原卷版).docx
  • 专题06 整式中与参数有关的两种考法(解析版)(北师大版) .docx专题06 整式中与参数有关的两种考法(解析版)(北师大版) .docx
  • 专题06 数据的分析(考点清单)解析版.docx专题06 数据的分析(考点清单)解析版.docx
  • 专题06 数据的分析(考点清单)原卷版.docx专题06 数据的分析(考点清单)原卷版.docx
  • 专题06 数列解答-天津市2021-2022学年高二上学期数学期末试题分类汇编.docx专题06 数列解答-天津市2021-2022学年高二上学期数学期末试题分类汇编.docx
  • 专题06 数列-2022届广东省高三上学期期末考试数学试题分类汇编.docx专题06 数列-2022届广东省高三上学期期末考试数学试题分类汇编.docx
  • 专题06 探究质量守恒定律—2022-2023学年九年级化学上册教材实验大盘点(人教版)(学生版).docx专题06 探究质量守恒定律—2022-2023学年九年级化学上册教材实验大盘点(人教版)(学生版).docx
  • 专题06 我国的社会主义市场经济体制 .docx专题06 我国的社会主义市场经济体制 .docx
  • 专题06 我们周围的空气(解析版).docx专题06 我们周围的空气(解析版).docx
  • 专题06 情景选择专项练习(一)-2022-2023学年三年级英语上册期末专项复习试题(译林版三起).docx专题06 情景选择专项练习(一)-2022-2023学年三年级英语上册期末专项复习试题(译林版三起).docx
  • 专题06 情态动词-备战2024年中考英语真题题源解密(全国通用)(原卷版).docx专题06 情态动词-备战2024年中考英语真题题源解密(全国通用)(原卷版).docx
  • 专题06 必修一综合检测-2023年高考英语一轮复习基础知识 基本能力双清(译林版2020) .docx专题06 必修一综合检测-2023年高考英语一轮复习基础知识 基本能力双清(译林版2020) .docx
  • 专题06 必修一Unit 5 -2023年高考英语一轮复习小题多维练(人教版2019).docx专题06 必修一Unit 5 -2023年高考英语一轮复习小题多维练(人教版2019).docx
  • 专题06 形容词副词单句语法填空100题-2022-2023学年高一英语牛津译林版(2020)必修第一册.docx专题06 形容词副词单句语法填空100题-2022-2023学年高一英语牛津译林版(2020)必修第一册.docx
  • 专题06 应用文写作(最新名校模拟题)-冲刺2023年高考英语终极题型预测(新高考专用)1.docx专题06 应用文写作(最新名校模拟题)-冲刺2023年高考英语终极题型预测(新高考专用)1.docx
  • 专题06 应用文写作(最新名校模拟题)-冲刺2023年高考英语终极题型预测(新高考专用).docx专题06 应用文写作(最新名校模拟题)-冲刺2023年高考英语终极题型预测(新高考专用).docx
  • 专题06 应用文写作(最新名校模拟题)-冲刺2023年高考英语终极题型预测(全国卷专用).docx专题06 应用文写作(最新名校模拟题)-冲刺2023年高考英语终极题型预测(全国卷专用).docx
  • 专题06 应用文写作(最新名校模拟题)-冲刺2022年高考英语终极题型押题(浙江专用).docx专题06 应用文写作(最新名校模拟题)-冲刺2022年高考英语终极题型押题(浙江专用).docx
  • 专题06 应用文写作(最新名校模拟题)-冲刺2022年高考英语终极题型押题(全国卷专用).docx专题06 应用文写作(最新名校模拟题)-冲刺2022年高考英语终极题型押题(全国卷专用).docx
  • 专题06 应用文写作(6)-研读近十年高考英语满分书面表达聚焦2023高考.docx专题06 应用文写作(6)-研读近十年高考英语满分书面表达聚焦2023高考.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1