山东省实验中学2019届高三第二次诊断性考试数学(文)试卷 WORD版含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 山东省实验中学2019届高三第二次诊断性考试数学文试卷 WORD版含解析 山东省 实验 中学 2019 届高三 第二次 诊断 考试 数学 试卷 WORD 解析
- 资源描述:
-
1、山东省实验中学2019届高三第二次诊断性考试数学试题(文科)一、选择题(本题包括12小题,每小题5分,共60分。每小题只有一个选项符合题意)1.已知集合中的元素个数是A. 2 B. 3 C. 6 D. 8【答案】C【解析】【分析】先写出,再看的个数.【详解】由题得=,故AB的元素的个数为6,故答案为:C【点睛】本题主要考查集合的并集运算,意在考查学生对该知识的掌握水平和分析推理能力.2.已知向量A. B. C. D. 2【答案】D【解析】【分析】由题得,解方程即得m的值.【详解】由题得故答案为:D【点睛】本题主要考查向量垂直的坐标表示,意在考查学生对该知识的掌握水平和分析推理能力.3.设满足约
2、束条件则的最大值是A. B. 0 C. 2 D. 3【答案】C【解析】【分析】画出约束条件的可行域,利用目标函数的最优解求解目标函数的范围即可【详解】x,y满足约束条件的可行域如图:目标函数z=xy,经过可行域的点B时,目标函数取得最大值,由解得B(2,0),目标函数的最大值为2-0=2,故答案为:C【点睛】本题考查线性规划的简单应用,目标函数的最优解以及可行域的作法是解题的关键4.已知等比数列中,A. B. 4 C. 4 D. 16【答案】A【解析】【分析】由题得,解之即得解.【详解】由题得因为等比数列的奇数项同号,所以,故答案为:A【点睛】本题主要考查等比数列的性质和等比中项的运用,意在考
3、查学生对这些知识的掌握水平和分析推理能力,本题要注意检验.5.“”是“指数函数单调递减”的A. 充分不必要条件 B. 必要不充分条件C. 充要条件 D. 既不充分也不必要条件【答案】B【解析】【分析】先化简“指数函数单调递减”得,再利用充要条件的定义判断得解.【详解】因为“指数函数单调递减”,所以,所以“”是“指数函数单调递减”的必要非充分条件.故答案为:B【点睛】(1)本题主要考查指数函数的单调性的运用,考查充要条件的判断,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 利用集合法判断充要条件,首先分清条件和结论;然后化简每一个命题,建立命题和集合的对应关系.,;最后利用下面的结论判
4、断:若,则是的充分条件,若,则是的充分非必要条件;若,则是的必要条件,若,则是的必要非充分条件;若且,即时,则是的充要条件.6.在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员按成绩由好到差编为135号,再用系统抽样方法从中抽取7人,则其中成绩在区间139,151上的运动员人数是()A. 3 B. 4 C. 5 D. 6【答案】B【解析】试题分析:对各数据分层为三个区间,然后根据系数抽样方法从中抽取7人,得到抽取比例为,然后各层按照此比例抽取解:由已知,将个数据分为三个层次是130,138,139,151,152,153,根据系数抽样方法从中抽取7人,得到抽取比
5、例为,所以成绩在区间139,151中共有20名运动员,抽取人数为20=4;故选B考点:茎叶图【此处有视频,请去附件查看】7.已知函数,若将函数的图像向左平移个单位长度后所得图像对应函数是偶函数,则A. B. C. D. 【答案】C【解析】【分析】先由函数平移得解析式,由函数为偶函数得,从而得.进而结合条件的范围可得解.【详解】将函数的图像向左平移个单位长度后所得图像对应函数是:.由此函数为偶函数得时有:.所以.即.由,得.故选C.【点睛】解答三角函数图象变换的注意点:(1)进行图象变换时,变换前后的三角函数名称一样,若名称不一样,则先要根据诱导公式统一名称(2)在进行三角函数图象变换时,可以“
6、先平移,后伸缩”,也可以“先伸缩,后平移”,无论是哪种变换,切记每一个变换总是对而言的,即图象变换要看“变量”发生了多大的变化,而不是“角”变化多少8.函数的部分图象为( )【答案】A【解析】试题分析:因,故当时,函数单调递增; 当时,函数单调递减; 当时,函数单调递增.故应选A.考点:导数与函数单调性的关系9.三国时代吴国数学家赵爽所注周髀算经中给出了勾股定理的绝妙证明下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用勾股股勾朱实黄实弦实,化简,得勾股弦设勾股形中勾股比为,若向
7、弦图内随机抛掷1000颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为( )A. 866 B. 500 C. 300 D. 134【答案】D【解析】由题意,大正方形的边长为2,中间小正形的边长为,则所求黄色图形内的图钉数大约为,故选D.10.曲线上的点到直线的最短距离是A. B. 2 C. D. 【答案】C【解析】 因此到直线的最短距离是 ,选C.11.将函数图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向右平移个单位后得到函数的的图像,若函数在区间上均单调递增,则实数a的取值范围为A. B. C. D. 【答案】B【解析】【分析】利用函数y=Asin(x+)的图象变换规律求得
8、g(x)的解析式,再利用余弦函数的单调性求得a的范围【详解】将函数f(x)=cosx图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得y=cos的图象;然后向右平移个单位后得到函数g(x)=cos=cos()的图象,若函数g(x)在区间与2a,4上均单调递增,则 0=,0,且2k,2k,kZ解得a,故答案为:B【点睛】本题主要考查函数y=Asin(x+)的图象变换规律,余弦函数的单调性,属于中档题12.已知均为单位向量,满足,设,则的最小值为:A. B. 0 C. D. 1【答案】C【解析】【分析】由题意可设C(cos ,sin ),设A(,),B(1,0),由条件求得x,y,再由两角和
9、的正弦公式、正弦函数的最值,可得最小值【详解】由|=1可设C(cos ,sin ),又=,所以cosBOA=,所以BOA=.因为|=|=1,可设A(,),B(1,0),=x+y,所以所以,因为,所以(1)因为,所以,(2)由(1)(2)得所以当x+y最小值为.故答案为:C【点睛】本题考查平面向量的基本定理和向量数量积的坐标表示,两角和的正弦公式、正弦函数的最值,考查运算能力,属于中档题二、填空题(本题包括4小题,共20分)13.已知函数_【答案】【解析】【分析】先求f(-1),再求的值.【详解】由题得f(-1)=所以=故答案为:-2【点睛】本题主要考查函数求值,考查对数函数的运算,意在考查学生
10、对这些知识的掌握水平和分析推理计算能力.14.已知且,则的最小值为_。【答案】9【解析】试题分析:因为且,所以取得等号,故函数的最小值为9.,答案为9.考点:本试题主要考查了均值不等式求解最值的运用。点评:解决该试题的关键是构造均值不等式的结构特点,利用一正二定三相等的思路来分析求解得到结论。15.函数的最大值为_【答案】【解析】【分析】先化简,再利用基本不等式求的最大值,即得f(x)的最大值.【详解】由题得,所以所以.故答案为:【点睛】本题主要考查三角恒等变换,考查基本不等式求最值,意在考查学生对这些知识的掌握水平和分析推理计算能力.16.表中的数阵为“森德拉姆数筛”,其特点是每行每列都成等
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-462550.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
