2021届高考数学一轮复习 第一部分 考点通关练 第七章 平面解析几何 考点测试53 双曲线(含解析)新人教B版.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
3 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021届高考数学一轮复习 第一部分 考点通关练 第七章 平面解析几何 考点测试53 双曲线含解析新人教B版 2021 高考 数学 一轮 复习 第一 部分 考点 通关 第七 平面 解析几何 测试 53
- 资源描述:
-
1、考点测试53双曲线高考概览高考在本考点中常考题型为选择题、填空题,分值为5分,中、高等难度考纲研读1. 了解双曲线的定义、几何图形和标准方程,知道其简单的几何性质(范围、对称性、顶点、离心率、渐近线)2了解双曲线的简单应用3理解数形结合的思想一、基础小题1已知双曲线C:1(a0,b0)的渐近线方程为yx,则双曲线C的离心率为()A. B C D答案B解析由题意可得,则离心率e,故选B.2已知双曲线1的实轴长为10,则该双曲线的渐近线的斜率为()A B C D答案D解析由m21652,解得m3(m3舍去)所以a5,b3,从而,故选D.3已知平面内两定点A(5,0),B(5,0),动点M满足|MA
2、|MB|6,则点M的轨迹方程是()A.1 B1(x4)C.1 D1(x3)答案D解析由双曲线的定义知,点M的轨迹是双曲线的右支,故排除A,C;又c5,a3,b2c2a216.焦点在x轴上,轨迹方程为1(x3)故选D.4若实数k满足0k9,则曲线1与曲线1的()A焦距相等 B实半轴长相等C虚半轴长相等 D离心率相等答案A解析0k0,25k0.1与1均表示双曲线,又25(9k)34k(25k)9,它们的焦距相等,故选A.5已知双曲线C:1(a0,b0)的焦距为10,点P(2,1)在C的渐近线上,则C的方程为()A.1 B1C.1 D1答案A解析1的焦距为10,c5.又双曲线渐近线方程为yx,且P(
3、2,1)在渐近线上,1,即a2b.由解得a2,b,则C的方程为1.故选A.6已知F1,F2为双曲线C:x2y21的左、右焦点,点P在C上,F1PF260,则|PF1|PF2|等于()A2 B4 C6 D8答案B解析由双曲线的方程,得a1,c,由双曲线的定义,得|PF1|PF2|2.在PF1F2中,由余弦定理,得|F1F2|2|PF1|2|PF2|22|PF1|PF2|cos60|PF1|2|PF2|2|PF1|PF2|(|PF1|PF2|)2|PF1|PF2|22|PF1|PF2|(2)2,解得|PF1|PF2|4.故选B.7已知双曲线C:1(a0,b0)的离心率e2,且它的一个顶点到相应焦点
4、的距离为1,则双曲线C的方程为_答案x21解析由题意得解得则b,故所求方程为x21.8设F1,F2分别为双曲线1的左、右焦点,点P在双曲线上,若点P到焦点F1的距离等于9,则点P到焦点F2的距离为_答案17解析解法一:实轴长2a8,半焦距c6,|PF1|PF2|8.|PF1|9,|PF2|1或|PF2|17.又|PF2|的最小值为ca642,|PF2|17.解法二:由题知,若P在右支上,则|PF1|28109,P在左支上|PF2|PF1|2a8,|PF2|9817.二、高考小题9(2019全国卷)设F为双曲线C:1(a0,b0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2y2a2交于P,Q
5、两点若|PQ|OF|,则C的离心率为()A. B C2 D答案A解析设双曲线C:1(a0,b0)的右焦点F的坐标为(c,0)由圆的对称性及条件|PQ|OF|可知,PQ是以OF为直径的圆的直径,且PQOF.设垂足为M,连接OP,如图,则|OP|a,|OM|MP|.由|OM|2|MP|2|OP|2得22a2,故,即e.故选A.10(2019全国卷)双曲线C:1的右焦点为F,点P在C的一条渐近线上,O为坐标原点,若|PO|PF|,则PFO的面积为()A. B C2 D3答案A解析双曲线1的右焦点坐标为(,0),一条渐近线的方程为yx,不妨设点P在第一象限,由于|PO|PF|,则点P的横坐标为,纵坐标
6、为,即PFO的底边长为,高为,所以它的面积为.故选A.11(2019浙江高考)渐近线方程为xy0的双曲线的离心率是()A B1 C D2答案C解析由题意可得1,e .故选C.12(2019天津高考)已知抛物线y24x的焦点为F,准线为l.若l与双曲线1(a0,b0)的两条渐近线分别交于点A和点B,且|AB|4|OF|(O为原点),则双曲线的离心率为()A B C2 D答案D解析由已知易得,抛物线y24x的焦点为F(1,0),准线l:x1,所以|OF|1.又双曲线的两条渐近线的方程为yx,不妨设点A,B,所以|AB|4|OF|4,所以2,即b2a,所以b24a2.又双曲线方程中c2a2b2,所以
7、c25a2,所以e.故选D.13(2018全国卷)双曲线1(a0,b0)的离心率为,则其渐近线方程为()Ayx ByxCyx Dyx答案A解析因为e,e21312,所以.因为该双曲线的渐近线方程为yx,所以该双曲线的渐近线方程为yx,故选A.14(2018全国卷)已知双曲线C:y21,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若OMN为直角三角形,则|MN|()A B3 C2 D4答案B解析由题意分析知,FON30.所以MON60,又因为OMN是直角三角形,不妨取NMO90,则ONF30,于是|FN|OF|2,|FM|OF|1,所以|MN|3.故选B.15(2
8、018全国卷)设F1,F2是双曲线C:1(a0,b0)的左、右焦点,O是坐标原点过F2作C的一条渐近线的垂线,垂足为P.若|PF1|OP|,则C的离心率为()A B2 C D答案C解析由题可知|PF2|b,|OF2|c,|PO|a.在RtPOF2中,cosPF2O,在PF1F2中,cosPF2O,c23a2,e.故选C.16(2018天津高考)已知双曲线1(a0,b0)的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点设A,B到双曲线的同一条渐近线的距离分别为d1和d2,且d1d26,则双曲线的方程为()A.1 B1C.1 D1答案C解析双曲线1(a0,b0)的离心率为2,e214
9、,3,即b23a2,c2a2b24a2,由题意可设A(2a,3a),B(2a,3a),3,渐近线方程为yx,则点A与点B到直线xy0的距离分别为d1a,d2a,又d1d26,aa6,解得a,b29.双曲线的方程为1,故选C.17(2019全国卷)已知双曲线C:1(a0,b0)的左、右焦点分别为F1,F2,过F1的直线与C的两条渐近线分别交于A,B两点若,0,则C的离心率为_答案2解析解法一:由,得A为F1B的中点又O为F1F2的中点,OABF2.又0,F1BF290.|OF2|OB|,OBF2OF2B.又F1OABOF2,F1OAOF2B,BOF2OF2BOBF2,OBF2为等边三角形如图1所
10、示,不妨设B为.点B在直线yx上,离心率e2.解法二:0,F1BF290.在RtF1BF2中,O为F1F2的中点,|OF2|OB|c.如图2,作BHx轴于H,由l1为双曲线的渐近线,可得,且|BH|2|OH|2|OB|2c2,|BH|b,|OH|a,B(a,b),F2(c,0)又,A为F1B的中点OAF2B,c2a,离心率e2.18(2019江苏高考)在平面直角坐标系xOy中,若双曲线x21(b0)经过点(3,4),则该双曲线的渐近线方程是_答案yx解析因为双曲线x21(b0)经过点(3,4),所以91(b0),解得b,即双曲线方程为x21,其渐近线方程为yx.19(2018江苏高考)在平面直
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-478364.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
六年级下册语文课件-《古诗诵读:出塞》|鄂教版(共7张PPT).ppt
