分享
分享赚钱 收藏 举报 版权申诉 / 14

类型2021届高考数学一轮复习 第一部分 考点通关练 第八章 概率与统计 考点测试62 离散型随机变量及其分布列(含解析)新人教B版.doc

  • 上传人:a****
  • 文档编号:478447
  • 上传时间:2025-12-08
  • 格式:DOC
  • 页数:14
  • 大小:222.50KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2021届高考数学一轮复习 第一部分 考点通关练 第八章 概率与统计 考点测试62 离散型随机变量及其分布列含解析新人教B版 2021 高考 数学 一轮 复习 第一 部分 考点 通关 第八 概率 统计
    资源描述:

    1、考点测试62离散型随机变量及其分布列高考概览高考在本考点的常考题型为解答题,分值为12分,近两年难度有所增大考纲研读1理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性2理解超几何分布及其导出过程,并能进行简单的应用一、基础小题1已知离散型随机变量X的分布列为:X123nP则k的值为()A B1 C2 D3答案B解析由分布列的性质知k1.2袋中装有10个红球,5个黑球,每次随机抽取一个球,若取得黑球,则另换一个红球放回袋中,直到取到红球为止,若抽取的次数为X,则表示“放回5个球”的事件为()AX4 BX5 CX6 DX4答案C解析第一次取到黑球,则放回1个球,第

    2、二次取到黑球,则共放回2个球,共放了五回,第六次取到了红球,试验终止,故X6.3设某项试验的成功率是失败率的2倍,用随机变量X去描述1次试验的成功次数,则P(X0)等于()A0 B C D答案C解析设失败率为p,则成功率为2p.X的分布列为:X01Pp2p则“X0”表示试验失败,“X1”表示试验成功,由p2p1,得p,即P(X0).故选C4某人在打电话时忘了号码的最后四位数字,只记得最后四位数字两两不同且都大于5,于是他随机拨最后四位数字,设他拨到所要号码时已拨的次数为,则随机变量的所有可能取值的种数为()A24 B20 C18 D4答案A解析由于后四位数字两两不同,且都大于5,即是6,7,8

    3、,9四位数字的不同排列,则有A24种5从装有3个白球、4个红球的箱子中,随机取出了3个球,恰好是2个白球、1个红球的概率是()A B C D答案C解析如果将白球视为合格品,红球视为不合格品,则这是一个超几何分布问题,故所求概率为P.6随机变量的所有可能的取值为1,2,3,10,且P(k)ak(k1,2,10),则a的值为()A B C110 D55答案B解析随机变量的所有可能的取值为1,2,3,10,且P(k)ak(k1,2,10),a2a3a10a1,55a1,a.715个村庄有7个村庄交通不方便,现从中任意选10个村庄,用X表示这10个村庄中交通不方便的村庄数,下列概率中等于的是()AP(

    4、X2) BP(X2) CP(X4) DP(X4)答案C解析X服从超几何分布,故P(Xk),k4.8甲、乙两队在一次对抗赛的某一轮中有3个抢答题,比赛规定:对于每一个题,没有抢到题的队伍得0分,抢到题并回答正确的得1分,抢到题但回答错误的扣1分(即得1分);若X是甲队在该轮比赛获胜时的得分(分数高者胜),则X的所有可能取值是_答案1,0,1,2,3解析X1,甲抢到1题但答错了,而乙抢到了2题且都答错了;X0,甲没抢到题,乙抢到3题且答错至少2题,或甲抢到2题,但答时1对1错,而乙答错1题;X1时,甲抢到1题且答对,乙抢到2题且至少答错1题,或甲抢到3题,且1错2对;X2时,甲抢到2题均答对;X3

    5、时,甲抢到3题均答对二、高考小题本考点在近三年高考中未涉及此题型三、模拟小题9(2020沈阳摸底)已知随机变量的分布列如下:012Pabc其中a,b,c成等差数列,则函数f(x)x22x有且只有一个零点的概率为()A B C D答案B解析由题意知a,b,c0,1,且解得b,又函数f(x)x22x有且只有一个零点,故方程x22x0只有一个根,则440,解得1,所以P(1).故选B10(2019绍兴模拟)随机变量X的概率分布规律为P(Xn)(n1,2,3,4),其中a是常数,则P的值为()A B C D答案D解析P(Xn)(n1,2,3,4),1,a,PP(X1)P(X2).故选D11(2019湖

    6、南湘西二模)已知甲、乙两台自动车床生产同一种零件,X表示甲车床生产1000件产品中的次品数,Y表示乙车床生产1000件产品中的次品数,经考察一段时间,X,Y的分布列分别是X0123P0.70.10.10.1Y012P0.50.30.2据此判断()A甲比乙生产的产品质量好B乙比甲生产的产品质量好C甲与乙生产的产品质量相同D无法判断答案A解析E(X)00.710.120.130.10.6,E(Y)00.510.320.20.7.由于E(Y)E(X),故甲比乙生产的产品质量好12(2019济南模拟)已知离散型随机变量X的分布列如表所示,若E(X)0,D(X)1,则P(X1)_.X1012Pabc答案

    7、解析E(X)0,D(X)1,又a,b,c0,1,a,b,c,P(X1)P(X1)P(X0).一、高考大题1(2019全国卷)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验试验方案如下:每一轮选取两只白鼠对药效进行对比试验对于两只白鼠,随机选一只施以甲药,另一只施以乙药一轮的治疗结果得出后,再安排下一轮试验当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1分

    8、;若都治愈或都未治愈则两种药均得0分甲、乙两种药的治愈率分别记为和,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,pi(i0,1,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p00,p81,piapi1bpicpi1(i1,2,7),其中aP(X1),bP(X0),cP(X1)假设0.5,0.8.证明:pi1pi(i0,1,2,7)为等比数列;求p4,并根据p4的值解释这种试验方案的合理性解(1)X的所有可能取值为1,0,1.P(X1)(1),P(X0)(1)(1),P(X1)(1)所以X的分布列为X101P(1)(1)(1)

    9、(1)(2)证明:由(1)得a0.4,b0.5,c0.1,因此pi0.4pi10.5pi0.1pi1,故0.1(pi1pi)0.4(pipi1),即pi1pi4(pipi1)又因为p1p0p10,所以pi1pi(i0,1,2,7)是公比为4,首项为p1的等比数列由可得p8p8p7p7p6p1p0p0(p8p7)(p7p6)(p1p0)p1.由于p81,故p1,所以p4(p4p3)(p3p2)(p2p1)(p1p0)p1.p4表示最终认为甲药更有效的概率由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为p40.0039,此时得出错误结论的概率非常小,说明这种试

    10、验方案合理2(2018天津高考)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16,现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查(1)应从甲、乙、丙三个部门的员工中分别抽取多少人?(2)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列与数学期望;设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率解(1)由已知,甲、乙、丙三个部门的员工人数之比为322,由于采用分层抽样的方法从中抽取7人,因此应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人

    11、(2)随机变量X的所有可能取值为0,1,2,3.P(Xk)(k0,1,2,3)所以随机变量X的分布列为X0123P随机变量X的数学期望E(X)0123.设事件B为“抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人”;事件C为“抽取的3人中,睡眠充足的员工有2人,睡眠不足的员工有1人”,则ABC,且B与C互斥由知,P(B)P(X2),P(C)P(X1),故P(A)P(BC)P(X2)P(X1).所以,事件A发生的概率为.3(2017全国卷)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完根据往年销售经验,每天

    12、需求量与当天最高气温(单位:)有关如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温10,15)15,20)20,25)25,30)30,35)35,40)天数216362574以最高气温位于各区间的频率代替最高气温位于该区间的概率(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?解(1

    13、)由题意知,X所有可能取值为200,300,500,由表格数据知P(X200)0.2,P(X300)0.4,P(X500)0.4.因此X的分布列为X200300500P0.20.40.4(2)由题意知,这种酸奶一天的需求量至多为500,至少为200,因此只需考虑200n500.当300n500时,若最高气温不低于25,则Y6n4n2n;若最高气温位于区间20,25),则Y63002(n300)4n12002n;若最高气温低于20,则Y62002(n200)4n8002n.因此E(Y)2n0.4(12002n)0.4(8002n)0.26400.4n.当200n300时,若最高气温不低于20,则

    14、Y6n4n2n;若最高气温低于20,则Y62002(n200)4n8002n,因此E(Y)2n(0.40.4)(8002n)0.21601.2n.所以n300时,Y的数学期望达到最大值,最大值为520元4(2017天津高考)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为,.(1)记X表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X的分布列和数学期望;(2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率解(1)随机变量X的所有可能取值为0,1,2,3.P(X0),P(X1),P(X2),P(X3).所以随机变量X的分布列为X0123P随

    15、机变量X的数学期望E(X)0123.(2)设Y表示第一辆车遇到红灯的个数,Z表示第二辆车遇到红灯的个数,则所求事件的概率为P(YZ1)P(Y0,Z1)P(Y1,Z0)P(Y0)P(Z1)P(Y1)P(Z0).所以这2辆车共遇到1个红灯的概率为.5(2016全国卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元在机器使用期间,如果备件不足再购买,则每个500元现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代

    16、替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数(1)求X的分布列;(2)若要求P(Xn)0.5,确定n的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n19与n20之中选其一,应选用哪个?解(1)由柱状图并以频率代替概率可得:1台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2,从而P(X16)0.20.20.04;P(X17)20.20.40.16;P(X18)20.20.20.40.40.24;P(X19)20.20.220.40.20.24;P(X20)20

    17、.20.40.20.20.2;P(X21)20.20.20.08;P(X22)0.20.20.04.所以X的分布列为X16171819202122P0.040.160.240.240.20.080.04(2)由(1)知P(X18)0.44,P(X19)0.68,故n的最小值为19.(3)记Y表示2台机器在购买易损零件上所需的费用(单位:元)当n19时,E(Y)192000.68(19200500)0.2(192002500)0.08(192003500)0.044040(元)当n20时,E(Y)202000.88(20200500)0.08(202002500)0.044080(元)可知当n1

    18、9时所需费用的期望值小于n20时所需费用的期望值故应选n19.二、模拟大题6(2019咸阳二模)交强险是车主必须为机动车购买的险种,若普通7座以下私家车投保交强险第一年的费用(基本保费)是950元,在下一年续保时,实行费率浮动制,其保费与上一年车辆发生道路交通事故情况相联系,具体浮动情况如下表:类型浮动因素浮动比率A1上一年度未发生有责任的道路交通事故下浮10%A2上两年度未发生有责任的道路交通事故下浮20%A3上三年度未发生有责任的道路交通事故下浮30%A4上一年度发生一次有责任不涉及死亡的道路交通事故0%A5上一年度发生两次及以上有责任不涉及死亡的道路交通事故上浮10%A6上三年度发生有责

    19、任涉及死亡的道路交通事故上浮30%据统计,某地使用某一品牌7座以下的车大约有5000辆,随机抽取了100辆车龄满三年的该品牌同型号私家车的下一年续保情况,统计得到如下表格:类型A1A2A3A4A5A6数量40101020155以这100辆该品牌汽车的投保类型的频率视为概率(1)试估计该地使用该品牌汽车的一续保人本年度的保费不超过950元的概率;(2)记为某家庭的一辆该品牌汽车在第四年续保时的费用,求的分布列和数学期望解(1)由题意估计该地使用该品牌汽车的一续保人本年度的保费不超过950元的概率:P0.8.(2)为某家庭的一辆该品牌汽车在第四年续保时的费用,则的可能取值为950(130%)665

    20、,950(120%)760,950(110%)855,950,950(110%)1045,950(130%)1235.P(665)0.1,P(760)0.1,P(855)0.4,P(950)0.2,P(1045)0.15,P(1235)0.05,的分布列为66576085595010451235P0.10.10.40.20.150.05E()6650.17600.18550.49500.210450.1512350.05893.7(2019济南模拟)某客户准备在家中安装一套净水系统,该系统为三级过滤,使用寿命为十年如图1所示,两个一级过滤器采用并联安装,二级过滤器与三级过滤器为串联安装其中每一

    21、级过滤都由核心部件滤芯来实现在使用过程中,一级滤芯和二级滤芯都需要不定期更换(每个滤芯是否需要更换相互独立),三级滤芯无需更换,若客户在安装净水系统的同时购买滤芯,则一级滤芯每个80元,二级滤芯每个160元若客户在使用过程中单独购买滤芯,则一级滤芯每个200元,二级滤芯每个400元现需决策安装净水系统的同时购滤芯的数量,为此参考了根据100套该款净水系统在十年使用期内更换滤芯的相关数据制成的图表,其中如图2是根据200个一级过滤器更换的滤芯个数制成的柱状图,下表是根据100个二级过滤器更换的滤芯个数制成的频数分布表二级滤芯更换频数分布表二级滤芯更换的个数56频数6040以200个一级过滤器更换

    22、滤芯的频率代替1个一级过滤器更换滤芯发生的概率,以100个二级过滤器更换滤芯的频率代替1个二级过滤器更换滤芯发生的概率(1)求一套净水系统在使用期内需要更换的各级滤芯总个数恰好为30的概率;(2)记X表示该客户的净水系统在使用期内需要更换的一级滤芯总数,求X的分布列及数学期望;(3)记m,n分别表示该客户在安装净水系统的同时购买的一级滤芯和二级滤芯的个数若mn28,且n5,6,以该客户的净水系统在使用期内购买各级滤芯所需总费用的期望值为决策依据,试确定m,n的值解(1)由题意可知,若一套净水系统在使用期内需要更换的各级滤芯总个数恰好为30,则该套净水系统中的2个一级过滤器均需更换12个滤芯,二

    23、级过滤器需要更换6个滤芯设“一套净水系统在使用期内需要更换的各级滤芯总个数恰好为30”为事件A因为1个一级过滤器需要更换12个滤芯的概率为0.4,二级过滤器需要更换6个滤芯的概率为0.4,所以P(A)0.40.40.40.064.(2)由柱状图可知,1个一级过滤器需要更换的滤芯个数为10,11,12的概率分别为0.2,0.4,0.4.由题意,知X可能的取值为20,21,22,23,24,并且P(X20)0.20.20.04,P(X21)0.20.420.16,P(X22)0.40.40.20.420.32,P(X23)0.40.420.32,P(X24)0.40.40.16.所以X的分布列为X

    24、2021222324P0.040.160.320.320.16E(X)200.04210.16220.32230.32240.1622.4.(3)解法一:因为mn28,n5,6,若m22,n6,则该客户在十年使用期内购买各级滤芯所需总费用的期望值为22802000.324000.1661602848;若m23,n5,则该客户在十年使用期内购买各级滤芯所需总费用的期望值为23802000.1651604000.42832.故m,n的值分别为23,5.解法二:因为mn28,n5,6,若m22,n6,设该客户在十年使用期内购买一级滤芯所需总费用为Y1(单位:元),则Y1176019602160P0.

    25、520.320.16E(Y1)17600.5219600.3221600.161888.设该客户在十年使用期内购买二级滤芯所需总费用为Y2(单位:元),则Y26160960,E(Y2)1960960.所以该客户在十年使用期内购买各级滤芯所需总费用的期望值为E(Y1)E(Y2)18889602848.若m23,n5,设该客户在十年使用期内购买一级滤芯所需总费用为Z1(单位:元),则Z118402040P0.840.16E(Z1)18400.8420400.161872.设该客户在十年使用期内购买二级滤芯所需总费用为Z2(单位:元),则Z28001200P0.60.4E(Z2)8000.61200

    26、0.4960.所以该客户在十年使用期内购买各级滤芯所需总费用的期望值为E(Z1)E(Z2)18729602832.故m,n的值分别为23,5.8(2019湖南长沙长郡中学一模)随着经济的发展,个人收入的提高,自2019年1月1日起,个人所得税起征点和税率进行调整调整如下:纳税人的工资、薪金所得,以每月全部收入额减除5000元后的余额为应纳税所得额依照个人所得税税率表,调整前后的计算方法如下表:个人所得税税率表(调整前)个人所得税税率表(调整后)免征额3500元免征额5000元级数全月应纳税所得额税率(%)级数全月应纳税所得额税率(%)1不超过1500元部分31不超过3000元部分32超过150

    27、0元至4500元的部分102超过3000元至12000元的部分103超过4500元至9000元的部分203超过12000元至25000元的部分20(1)假如小红某月的工资、薪金等所得税前收入总和不高于8000元,记x表示总收入,y表示应纳的税,试写出调整前后y关于x的函数表达式;(2)某税务部门在小红所在公司利用分层抽样方法抽取某月100个不同层次员工的税前收入,并制成下面的频数分布表:收入(元)3000,5000)5000,7000)7000,9000)9000,11000)11000,13000)13000,15000)人数304010875先从收入在3000,5000)及5000,700

    28、0)的人群中按分层抽样抽取7人,再从中选4人作为新纳税法知识宣讲员,用a表示抽到作为宣讲员的收入在3000,5000)元的人数,b表示抽到作为宣讲员的收入在5000,7000)元的人数,随机变量Z|ab|,求Z的分布列与数学期望;小红该月的工资、薪金等税前收入为7500元时,请你帮小红算一下调整后小红的实际收入比调整前增加了多少?解(1)调整前y关于x的表达式为y调整后y关于x的表达式为y(2)由频数分布表可知从3000,5000)及5000,7000)的人群中抽取7人,其中3000,5000)中占3人,5000,7000)中占4人,再从这7人中选4人,所以Z的取值可能为0,2,4,P(Z0)P(a2,b2),P(Z2)P(a1,b3)P(a3,b1),P(Z4)P(a0,b4),所以其分布列为Z024P所以E(Z)024.由于小红的工资、薪金等税前收入为7500元,按调整起征点前应纳个税为15003%250010%295元,按调整起征点后应纳个税为25003%75元,由此可知,调整起征点后应纳个税少交220元,所以小红的实际收入比调整前增加了220元

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2021届高考数学一轮复习 第一部分 考点通关练 第八章 概率与统计 考点测试62 离散型随机变量及其分布列(含解析)新人教B版.doc
    链接地址:https://www.ketangku.com/wenku/file-478447.html
    相关资源 更多
  • (新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx(新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx
  • (新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf(新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc
  • (全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc(全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc
  • (全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc(全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1