《创新设计》 2017届二轮专题复习 全国版 数学文科 材料 专题二 三角函数与平面向量 第1讲 三角函数的图象与性质 .doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 创新设计 创新设计 2017届二轮专题复习 全国版 数学文科 材料 专题二 三角函数与平面向量 第1讲 三角函
- 资源描述:
-
1、高考资源网() 您身边的高考专家第1讲三角函数的图象与性质高考定位三角函数的图象与性质是高考考查的重点和热点内容,主要从以下两个方面进行考查:1.三角函数的图象,主要涉及图象变换问题以及由图象确定解析式问题,主要以选择题、填空题的形式考查;2.利用三角函数的性质求解三角函数的值、参数、最值、值域、单调区间等,主要以解答题的形式考查.真 题 感 悟 1.(2016全国卷)若将函数y2sin的图象向右平移个周期后,所得图象对应的函数为()A.y2sinB.y2sinC.y2sinD.y2sin解析函数y2sin的周期为,将函数y2sin的图象向右平移个周期即个单位,所得函数为y2sin2sin,故
2、选D.答案D2.(2016全国卷)函数yAsin(x)的部分图象如图所示,则()A.y2sinB.y2sinC.y2sinD.y2sin解析由图可知,T2,所以2,由五点作图法可知2,所以,所以函数的解析式为y2sin,故选A.答案A3.(2016全国卷)函数f(x)cos 2x6cos的最大值为()A.4 B.5 C.6 D.7解析由f(x)cos 2x6cos12sin2x6sin x2,所以当sin x1时函数的最大值为5,故选B.答案B4.(2016江苏卷)定义在区间0,3上的函数ysin 2x的图象与ycos x的图象的交点个数是_.解析在区间0,3上分别作出ysin 2x和ycos
3、 x的简图如下:由图象可得两图象有7个交点.答案7考 点 整 合1.常用三种函数的易误性质函数ysin xycos xytan x图象单调性在(kZ)上单调递增;在(kZ)上单调递减在2k,2k(kZ)上单调递增;在2k,2k(kZ)上单调递减在(kZ)上单调递增对称性对称中心:(k,0)(kZ);对称轴:xk(kZ)对称中心:(kZ);对称轴:xk(kZ)对称中心:(kZ)2.三角函数的常用结论(1)yAsin(x),当k(kZ)时为奇函数;当k(kZ)时为偶函数;对称轴方程可由xk(kZ)求得.(2)yAcos(x),当k(kZ)时为奇函数;当k(kZ)时为偶函数;对称轴方程可由xk(kZ
4、)求得.(3)yAtan(x),当k(kZ)时为奇函数.3.三角函数的两种常见变换热点一三角函数的图象 微题型1三角函数的图象变换【例11】(2016长沙模拟)某同学用“五点法”画函数f(x)Asin(x)在某一个周期内的图象时,列表并填入了部分数据,如下表: x02xAsin(x)0550(1)请将上表数据补充完整,填写在相应位置,并直接写出函数f(x)的解析式;(2)将yf(x)图象上所有点向左平行移动(0)个单位长度,得到yg(x)的图象.若yg(x)图象的一个对称中心为,求的最小值.解(1)根据表中已知数据,解得A5,2,.数据补全如下表:x02xAsin(x)05050且函数表达式为
5、f(x)5sin.(2)由(1)知f(x)5sin,得g(x)5sin.因为ysin x的对称中心为(k,0),kZ.令2x2k,解得x,kZ.由于函数yg(x)的图象关于点成中心对称,令,解得,kZ.由0可知,当k1时,取得最小值.探究提高在图象变换过程中务必分清是先相位变换,还是先周期变换.变换只是相对于其中的自变量x而言的,如果x的系数不是1,就要把这个系数提取后再确定变换的单位长度和方向.微题型2由三角函数图象求其解析式【例12】 函数f(x)Asin(x)(A,为常数,A0,0,0)的图象如图所示,则f的值为_.解析根据图象可知,A2,所以周期T,由2.又函数过点,所以有sin1,而
6、0.所以,则f(x)2sin,因此f2sin1.答案1探究提高已知图象求函数yAsin(A0,0)的解析式时,常用的方法是待定系数法.由图中的最高点、最低点或特殊点求A;由函数的周期确定;确定常根据“五点法”中的五个点求解,其中一般把第一个零点作为突破口,可以从图象的升降找准第一个零点的位置.【训练1】(2016安徽“江南十校”联考)已知函数f(x)Asin(x)(A0,0,|)的部分图象如图所示.(1)求函数f(x)的解析式;(2)将函数yf(x)的图象上各点的纵坐标保持不变,横坐标缩短到原来的倍,再把所得的函数图象向左平移个单位长度,得到函数yg(x)的图象,求函数g(x)在区间上的最小值
7、.解(1)设函数f(x)的最小正周期为T,由题图可知A1,即T,所以,解得2,故f(x)sin(2x).由0sin可得k,kZ,即k,kZ,因为|,所以,故函数f(x)的解析式为f(x)sin.(2)根据条件得g(x)sin,当x时,4x,所以当x时,g(x)取得最小值,且g(x)min.热点二三角函数的性质微题型1由三角函数的性质求参数【例21】 (1)已知0,函数f(x)sin在上单调递减,则的取值范围是()A.B.C.D.(0,2(2)设函数f(x)Asin(x)(A,是常数,A0,0).若f(x)在区间上具有单调性,且fff,则f(x)的最小正周期为_.解析(1)由2kx2k,kZ,且
8、0,得x,kZ.取k0,得x,又f(x)在上单调递减,且,解之得.(2)由f(x)在上具有单调性,得,即T;因为ff,所以f(x)的一条对称轴为x;又因为ff,所以f(x)的一个对称中心的横坐标为.所以T,即T.答案(1)A(2)探究提高此类题属于三角函数性质的逆用,解题的关键是借助于三角函数的图象与性质列出含参数的不等式,再根据参数范围求解.或者,也可以取选项中的特殊值验证.微题型2考查三角函数的对称性、单调性【例22】(2016大理5月模拟)已知函数f(x)sin(x)cos(x)为奇函数,且函数yf(x)的图象的两相邻对称轴之间的距离为.(1)求f的值;(2)将函数yf(x)的图象向右平
9、移个单位后,得到函数yg(x)的图象,求函数g(x)的单调递增区间.解(1)f(x)sin(x)cos(x)22sin.因为f(x)为奇函数,所以f(0)2sin0,又0|,可得,所以f(x)2sin x,由题意得2,所以2.故f(x)2sin 2x.因此f2sin .(2)将f(x)的图象向右平移个单位后,得到f的图象,所以g(x)f2sin2sin.当2k2x2k(kZ),即kxk(kZ)时,g(x)单调递增,因此g(x)的单调递增区间为(kZ).探究提高对于函数yAsin(x)(A0,0)单调区间的求解,其基本方法是将x作为一个整体代入正弦函数增区间(或减区间),求出的区间即为yAsin
10、(x)的增区间(或减区间),但是当A0,0时,需先利用诱导公式变形为yAsin(x),则yAsin(x)的增区间即为原函数的减区间,减区间即为原函数的增区间.微题型3考查三角函数在闭区间上的最值(或值域)【例23】(2016张家界模拟)设函数f(x)sin2x2sin xcos xcos2x(xR)的图象关于直线x对称,其中,为常数,且.(1)求函数f(x)的最小正周期;(2)若yf(x)的图象经过点,求函数f(x)在x上的值域.解(1)因为f(x)sin2x2sin xcos xcos2xcos 2xsin 2x2sin,由直线x是yf(x)图象的一条对称轴,可得sin1,所以2k(kZ),
11、即(kZ).又,kZ,所以k1,故.所以f(x)的最小正周期是.(2)由yf(x)的图象过点,得f0,即2sin2sin,即.故f(x)2sin,x,x,函数f(x)的值域为1,2.探究提高求三角函数最值的两条思路:(1)将问题化为yAsin(x)B的形式,结合三角函数的性质或图象求解;(2)将问题化为关于sin x或cos x的二次函数的形式,借助二次函数的性质或图象求解.【训练2】(2016山东卷)设f(x)2sin(x)sin x(sin xcos x)2.(1)求f(x)的单调递增区间;(2)把yf(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位
12、,得到函数yg(x)的图象,求g的值.解(1)f(x)2sin(x)sin x(sin xcos x)22sin2x(12sin xcos x)(1cos 2x)sin 2x1sin 2xcos 2x12sin1.由2k2x2k(kZ),得kxk(kZ).所以f(x)的单调递增区间是(kZ).(2)由(1)知f(x)2sin1,把yf(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变).得到y2sin1的图象.再把得到的图象向左平移个单位,得到y2sin x1的图象,即g(x)2sin x1.所以g2sin 1.1.已知函数yAsin(x)B(A0,0)的图象求解析式(1)A,B.(2)
13、由函数的周期T求,.(3)利用“五点法”中相对应的特殊点求.2.运用整体换元法求解单调区间与对称性类比ysin x的性质,只需将yAsin(x)中的“x”看成ysin x中的“x”,采用整体代入求解.(1)令xk(kZ),可求得对称轴方程;(2)令xk(kZ),可求得对称中心的横坐标;(3)将x看作整体,可求得yAsin(x)的单调区间,注意的符号.3.函数yAsin(x)B的性质及应用的求解思路第一步:先借助三角恒等变换及相应三角函数公式把待求函数化成yAsin(x)B(一角一函数)的形式;第二步:把“x”视为一个整体,借助复合函数性质求yAsin(x)B的单调性及奇偶性、最值、对称性等问题
14、.一、选择题1.要得到函数ysin的图象,只需将函数ysin 4x的图象()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位解析ysinsin,要得到ysin的图象,只需将函数ysin 4x的图象向右平移个单位.答案B2.函数f(x)Asin(x)的部分图象如图所示,则将yf(x)的图象向右平移个单位后,得到的图象的解析式为()A.ysin 2xB.ycos 2xC.ysin D.ysin解析由图象知A1,T,T,2,由sin1,|得f(x)sin,则图象向右平移个单位后得到的图象的解析式为ysinsin.答案D3.把函数ysin图象上各点的横坐标缩小到原来的(纵坐
15、标不变),再将图象向右平移个单位,那么所得图象的一条对称轴方程为()A.xB.xC.xD.x解析由题意知ysinsincos 2x,验证可知x是所得图象的一条对称轴.答案A4.函数f(x)cos(x)的部分图象如图所示,则f(x)的单调递减区间为()A.,kZB.,kZC.,kZD.,kZ解析由图象知1,T2.由2k,kZ,不妨取,f(x)cos,由2kx2k,kZ.得2kx2k,kZ.D正确.答案D5.(2016唐山期末)已知函数f(x)sin xcos x(0),ff0,且f(x)在区间上递减,则()A.3 B.2 C.6 D.5解析f(x)2sin,ff0.当x时,f(x)0.k,kZ,
16、3k1,kZ,排除A、C;又f(x)在上递减,把2,5代入验证,可知2.答案B二、填空题6.(2016兰州模拟)若将函数f(x)sin的图象向右平移个单位,所得图象关于y轴对称,则的最小正值是_.解析f(x)sing(x)sinsin,关于y轴对称,即函数g(x)为偶函数,则2k(kZ),(kZ),显然,k1时,有最小正值.答案7.函数f(x)Asin(x)的部分图象如图所示,若x1,x2,且f(x1)f(x2),则f(x1x2)_.解析观察图象可知,A1,T,2,f(x)sin(2x).将代入上式得sin0,由已知得,故f(x)sin.函数图象的对称轴为x.又x1,x2,且f(x1)f(x2
17、),f(x1x2)ffsin.答案8.(2015天津卷)已知函数f(x)sin xcos x(0),xR.若函数f(x)在区间(,)内单调递增,且函数yf(x)的图象关于直线x对称,则的值为_.解析f(x)sin xcos xsin,因为f(x)在区间(,)内单调递增,且函数图象关于直线x对称,所以f()必为一个周期上的最大值,所以有2k,kZ,所以22k,kZ.又(),即2,即2,所以.答案三、解答题9.已知函数f(x)4sin3xcos x2sin xcos xcos 4x.(1)求函数f(x)的最小正周期及单调递增区间;(2)求f(x)在区间上的最大值和最小值.解f(x)2sin xco
18、s xcos 4xsin 2xcos 2xcos 4xsin 4xcos 4xsin.(1)函数f(x)的最小正周期T.令2k4x2k,kZ,得x,kZ.所以f(x)的单调递增区间为,kZ.(2)因为0x,所以4x.此时sin1,所以sin,即f(x).所以f(x)在区间上的最大值和最小值分别为,.10.(2016陕西八校联考)设函数f(x)sinsin2xcos2x.(1)求f(x)的最小正周期及其图象的对称轴方程;(2)将函数f(x)的图象向右平移个单位长度,得到函数g(x)的图象,求g(x)在区间上的值域.解(1)f(x)sin 2xcos 2xcos 2xsin 2xcos 2xsin
19、.所以f(x)的最小正周期为T.令2xk(kZ),得对称轴方程为x(kZ),(2)将函数f(x)的图象向右平移个单位长度,得到函数g(x)sincos 2x的图象,即g(x)cos 2x.当x时,2x,可得cos 2x,所以cos 2x,即函数g(x)在区间上的值域是.11.(2016贵州七校联考)已知向量a(m,cos 2x),b(sin 2x,n),函数f(x)ab,且yf(x)的图象过点和点.(1)求m,n的值;(2)将yf(x)的图象向左平移(0)个单位后得到函数yg(x)的图象,若yg(x)图象上各最高点到点(0,3)的距离的最小值为1,求yg(x)的单调递增区间.解(1)由题意知f
20、(x)abmsin 2xncos 2x.因为yf(x)的图象经过点和,所以即解得m,n1.(2)由(1)知f(x) sin 2xcos 2x2sin.由题意知g(x)f(x)2sin.设yg(x)的图象上符合题意的最高点为(x0,2),由题意知x11,所以x00,即到点(0,3)的距离为1的最高点为(0,2).将其代入yg(x)得sin1,因为0,所以.因此g(x)2sin2cos 2x.由2k2x2k,kZ,得kxk,kZ,所以函数yg(x)的单调递增区间为,kZ.第2讲三角恒等变换与解三角形高考定位1.三角函数的化简与求值是高考的命题热点,其中同角三角函数的基本关系、诱导公式是解决计算问题
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-483054.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
