山东省济宁市邹城一中2019-2020学年高一数学下学期期中检测试题(含解析).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 山东省 济宁市 邹城 一中 2019 2020 学年 数学 学期 期中 检测 试题 解析
- 资源描述:
-
1、山东省济宁市邹城一中2019-2020学年高一数学下学期期中检测试题(含解析)一、单选题1.若复数满足:,则( )A. 1B. C. D. 2【答案】B【解析】【分析】根据复数满足的等式化简变形,结合复数除法运算即可化简得,根据复数模的定义及运算即可求解.【详解】复数满足,则,由复数除法运算化简可得,由复数模的定义及运算可得,故选:B.【点睛】本题考查了复数模的定义,复数的除法运算,属于基础题.2.已知,为坐标原点,.点在轴上,则的值为( )A. 0B. 1C. D. 【答案】B【解析】【分析】根据题意,设点,根据向量相等,列方程,即可求解.【详解】设点,则则有解得故选:【点睛】本题考查向量相
2、等的坐标表示,属于基础题.3.已知水平放置的ABC是按“斜二测画法”得到如图所示的直观图,其中BOCO1,AO,那么原ABC的面积是()A. B. 2C D. 【答案】A【解析】【分析】先根据已知求出原ABC的高为AO,再求原ABC的面积.【详解】由题图可知原ABC的高为AO,SABCBCOA2,故答案为A【点睛】本题主要考查斜二测画法的定义和三角形面积的计算,意在考察学生对这些知识的掌握水平和分析推理能力.4.已知的角A、B、C所对的边为a、b、c,则( )A. B. 2C. D. 3【答案】B【解析】【分析】由已知结合余弦定理,得到关于的方程,即可得答案【详解】由余弦定理可得,即,整理可得
3、,解可得故选:B【点睛】本题考查余弦定理的简单应用,考查函数与方程思想、转化与化归思想,考查运算求解能力,属于基础试题5.已知正方体棱长为1,则该正方体外接球的体积与其内切球表面积之比为( )A. B. C. D. 【答案】D【解析】【分析】由正方体性质知,它的外接球的半径为,内切球的半径为,利用球体积,表面积公式计算得结果.【详解】由正方体性质知,它的外接球的半径为,内切球的半径为,:2故选:D【点睛】本题主要考查了正方体的性质,球的体积,表面积的计算,属于基础题.6.设,其中,则以下结论正确的是( )A. 对应的点在第一象限B. 一定不为纯虚数C. 对应的点在实轴的下方D. 一定为实数【答
4、案】C【解析】【分析】根据,可正可负也可为0,即可判定.【详解】,不可能实数,所以D错误;对应的点在实轴的上方,又与对应的点关于实轴对称,对应的点在实轴的下方,所以C正确;,对应的点在第二象限,所以A错误;,可能为纯虚数,所以B错误;C项正确.故选:C【点睛】此题考查复数概念的辨析,关键在于准确求出实部和虚部的取值范围.7.若,且,那么是( )A. 直角三角形 B. 等边三角形C. 等腰三角形D. 等腰直角三角形【答案】B【解析】【详解】解析:由题设可得由题设可得,即该三角形是等边三角形,应选答案B8.如图所示,在正方形ABCD中,E为AB的中点,F为CE的中点,则 A. B. C. D. 【
5、答案】D【解析】【分析】由平面向量基本定理和向量运算求解即可【详解】根据题意得:,又,所以.故选D.【点睛】本题主要考查了平面向量的基本定理的简单应用,属于基础题.9.设l是直线,是两个不同的平面,下列命题正确的是( )A. 若,则B. 若,则C. 若,则D. 若,则【答案】D【解析】【分析】利用空间线线、线面、面面的位置关系对选项进行逐一判断,即可得到答案.【详解】A.若,则与可能平行,也可能相交,所以不正确.B.若,则与可能的位置关系有相交、平行或,所以不正确.C.若,则可能,所以不正确.D.若,由线面平行的性质过的平面与相交于,则,又.所以,所以有,所以正确.故选:D【点睛】本题考查面面
6、平行、垂直的判断,线面平行和垂直的判断,属于基础题.10.一个由两个圆柱组合而成的密闭容器内装有部分液体,小圆柱底面半径为,大圆柱底面半径为,如图1放置容器时,液面以上空余部分的高为,如图2放置容器时,液面以上空余部分的高为,则( )A. B. C. D. 【答案】B【解析】【分析】根据空余部分体积相等列出等式即可求解.【详解】在图1中,液面以上空余部分的体积为;在图2中,液面以上空余部分的体积为.因为,所以.故选:B【点睛】本题考查圆柱的体积,属于基础题.11.一船向正北方向航行,看见正西方向有两个相距10海里的灯塔恰好与它在一条直线上,继续航行半小时后, 看见一灯塔在船的南偏西60方向上,
7、另一灯塔在船的南偏西75方向上,则这艘船的速度是 ( )A. 5海里/时B. 海里/时C. 10海里/时D. 海里/时【答案】C【解析】【分析】在中,计算得到, ,在计算得到,得到答案.【详解】如图依题意有,从而,在中,求得,这艘船的速度是 (海里/时)【点睛】本题考查了三角函数的应用,属于简单题.12.对任意向量,下列关系式中不恒成立的是( )A. B. C. D. 【答案】B【解析】因为,所以选项A正确;当与方向相反时,不成立,所以选项B错误;向量的平方等于向量的模的平方,所以选项C正确;,所以选项D正确故选B【考点定位】1、向量的模;2、向量的数量积13.已知三棱柱的侧棱与底面边长都相等
8、,在底面内的射影为的中心,则与底面所成角的余弦值等于( )A. B. C. D. 【答案】B【解析】【分析】连接,设侧棱与底面边长都等于,计算,再根据点到底面的距离等于点到底面的距离,求解与底面所成角的正弦值,即可.【详解】如图所示,设三棱柱的侧棱与底面边长都等于.连接,则.在中,得.在中,即,则为等边三角形,所以.在菱形中,得.又因为点到底面的距离等于点到底面的距离所以与底面所成角的正弦值为.即与底面所成角的余弦值为.故选:B【点睛】本题考查直线与平面所成角的问题,属于中档题题.14.若为所在平面内任意一点,且满足,则一定为( )A. 锐角三角形B. 直角三角形C. 等腰三角形D. 钝角三角
9、形【答案】C【解析】【分析】由向量的线性运算可知,所以,作出图形,结合向量加法的平行四边形法则,可得,进而可得,即可得出答案.【详解】由题意,所以,取的中点,连结,并延长到,使得,连结,则四边形为平行四边形,所以.所以,即,故,是等腰三角形.故选:C.【点睛】本题考查三角形形状的判断,考查平面向量的性质,考查学生的计算求解能力,属于基础题.15.已知,.(1)求与的夹角;(2)求.【答案】(1)(2)【解析】【分析】(1)由已知可以求出的值,进而根据数量积的夹角公式,求出,进而得到向量与的夹角;(2)要求,我们可以根据(1)中结论,先求出的值,然后开方求出答案【详解】(1),向量与的夹角.(2
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-493722.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
