5-导数及其应用-五年(2018-2022)高考数学真题按知识点分类汇编.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 导数 及其 应用 2018 2022 高考 数学 真题按 知识点 分类 汇编
- 资源描述:
-
1、五年2018-2022高考数学真题按知识点分类汇编5-导数及其应用(含解析)一、单选题1(2022全国统考高考真题)当时,函数取得最大值,则()ABCD12(2022全国统考高考真题)函数在区间的最小值、最大值分别为()ABCD3(2022全国统考高考真题)已知,则()ABCD4(2022全国统考高考真题)已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为,且,则该正四棱锥体积的取值范围是()ABCD5(2022全国统考高考真题)设,则()ABCD6(2021浙江统考高考真题)已知函数,则图象为如图的函数可能是()ABCD7(2021全国统考高考真题)设,若为函数的极大值点,则(
2、)ABCD8(2021全国统考高考真题)若过点可以作曲线的两条切线,则()ABCD9(2020全国统考高考真题)若直线l与曲线y=和x2+y2=都相切,则l的方程为()Ay=2x+1By=2x+Cy=x+1Dy=x+10(2020全国统考高考真题)函数的图像在点处的切线方程为()ABCD11(2019天津高考真题)已知,设函数若关于的不等式在上恒成立,则的取值范围为ABCD12(2019全国高考真题)曲线y=2sinx+cosx在点(,1)处的切线方程为ABCD13(2019全国统考高考真题)已知曲线在点处的切线方程为,则ABCD14(2018浙江高考真题)已知成等比数列,且若,则ABCD15
3、(2018全国高考真题)设函数若为奇函数,则曲线在点处的切线方程为()ABCD16(2018全国高考真题)函数的图像大致为ABCD二、多选题17(2022全国统考高考真题)已知函数的图像关于点中心对称,则()A在区间单调递减B在区间有两个极值点C直线是曲线的对称轴D直线是曲线的切线18(2022全国统考高考真题)已知函数,则()A有两个极值点B有三个零点C点是曲线的对称中心D直线是曲线的切线19(2022全国统考高考真题)已知函数及其导函数的定义域均为,记,若,均为偶函数,则()ABCD三、填空题20(2022全国统考高考真题)已知和分别是函数(且)的极小值点和极大值点若,则a的取值范围是_2
4、1(2022全国统考高考真题)若曲线有两条过坐标原点的切线,则a的取值范围是_22(2021全国统考高考真题)已知函数,函数的图象在点和点的两条切线互相垂直,且分别交y轴于M,N两点,则取值范围是_23(2021全国统考高考真题)写出一个同时具有下列性质的函数_;当时,;是奇函数24(2021北京统考高考真题)已知函数,给出下列四个结论:若,恰 有2个零点;存在负数,使得恰有1个零点;存在负数,使得恰有3个零点;存在正数,使得恰有3个零点其中所有正确结论的序号是_25(2021全国统考高考真题)曲线在点处的切线方程为_26(2021全国统考高考真题)函数的最小值为_.27(2020江苏统考高考
5、真题)在平面直角坐标系xOy中,已知,A,B是圆C:上的两个动点,满足,则PAB面积的最大值是_28(2020全国统考高考真题)设函数若,则a=_29(2020全国统考高考真题)曲线的一条切线的斜率为2,则该切线的方程为_.30(2019天津高考真题) 曲线在点处的切线方程为_.31(2019全国高考真题)曲线在点处的切线方程为_32(2019江苏高考真题)在平面直角坐标系中,点A在曲线y=lnx上,且该曲线在点A处的切线经过点(-e,-1)(e为自然对数的底数),则点A的坐标是_.33(2019江苏高考真题)在平面直角坐标系中,P是曲线上的一个动点,则点P到直线x+y=0的距离的最小值是_.
6、34(2018全国高考真题)曲线在点处的切线的斜率为,则_35(2018全国高考真题)曲线在点处的切线方程为_36(2018江苏高考真题)若函数在内有且只有一个零点,则在上的最大值与最小值的和为_37(2018全国高考真题)已知函数,则的最小值是_38(2018全国高考真题)曲线在点处的切线方程为_39(2018天津高考真题)已知函数f(x)=exlnx,为f(x)的导函数,则的值为_四、解答题40(2022天津统考高考真题)已知,函数(1)求函数在处的切线方程;(2)若和有公共点,(i)当时,求的取值范围;(ii)求证:41(2022北京统考高考真题)已知函数(1)求曲线在点处的切线方程;(
7、2)设,讨论函数在上的单调性;(3)证明:对任意的,有42(2022浙江统考高考真题)设函数(1)求的单调区间;(2)已知,曲线上不同的三点处的切线都经过点证明:()若,则;()若,则(注:是自然对数的底数)43(2022全国统考高考真题)已知函数(1)当时,讨论的单调性;(2)当时,求a的取值范围;(3)设,证明:44(2022全国统考高考真题)已知函数(1)当时,求的最大值;(2)若恰有一个零点,求a的取值范围45(2022全国统考高考真题)已知函数,曲线在点处的切线也是曲线的切线(1)若,求a;(2)求a的取值范围46(2022全国统考高考真题)已知函数(1)若,求a的取值范围;(2)证
8、明:若有两个零点,则47(2022全国统考高考真题)已知函数(1)当时,求曲线在点处的切线方程;(2)若在区间各恰有一个零点,求a的取值范围48(2022全国统考高考真题)已知函数和有相同的最小值(1)求a;(2)证明:存在直线,其与两条曲线和共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列49(2021天津统考高考真题)已知,函数(I)求曲线在点处的切线方程:(II)证明存在唯一的极值点(III)若存在a,使得对任意成立,求实数b的取值范围50(2021全国统考高考真题)一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后
9、为第2代,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X表示1个微生物个体繁殖下一代的个数,(1)已知,求;(2)设p表示该种微生物经过多代繁殖后临近灭绝的概率,p是关于x的方程:的一个最小正实根,求证:当时,当时,;(3)根据你的理解说明(2)问结论的实际含义51(2021全国统考高考真题)已知函数(1)讨论的单调性;(2)从下面两个条件中选一个,证明:只有一个零点;52(2021北京统考高考真题)已知函数(1)若,求曲线在点处的切线方程;(2)若在处取得极值,求的单调区间,以及其最大值与最小值53(2021浙江统考高考真题)设a,b为实数,且,函数(1)求函数的单调区间;(2)若
10、对任意,函数有两个不同的零点,求a的取值范围;(3)当时,证明:对任意,函数有两个不同的零点,满足.(注:是自然对数的底数)54(2021全国统考高考真题)已知抛物线的焦点为,且与圆上点的距离的最小值为(1)求;(2)若点在上,是的两条切线,是切点,求面积的最大值55(2021全国统考高考真题)设函数,已知是函数的极值点(1)求a;(2)设函数证明:56(2021全国高考真题)设函数,其中.(1)讨论的单调性;(2)若的图象与轴没有公共点,求a的取值范围.57(2021全国统考高考真题)已知且,函数(1)当时,求的单调区间;(2)若曲线与直线有且仅有两个交点,求a的取值范围58(2021全国统
11、考高考真题)已知函数(1)讨论的单调性;(2)求曲线过坐标原点的切线与曲线的公共点的坐标59(2021全国统考高考真题)已知函数.(1)讨论的单调性;(2)设,为两个不相等的正数,且,证明:.60(2020天津统考高考真题)已知函数,为的导函数()当时,(i)求曲线在点处的切线方程;(ii)求函数的单调区间和极值;()当时,求证:对任意的,且,有61(2020北京统考高考真题)已知函数()求曲线的斜率等于的切线方程;()设曲线在点处的切线与坐标轴围成的三角形的面积为,求的最小值62(2020浙江统考高考真题)已知,函数,其中e=2.71828为自然对数的底数()证明:函数在上有唯一零点;()记
12、x0为函数在上的零点,证明:();()63(2020海南高考真题)已知函数(1)当时,求曲线在点处的切线与两坐标轴围成的三角形的面积;(2)若不等式恒成立,求a的取值范围64(2020江苏统考高考真题)某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O在水平线MN上,桥AB与MN平行,为铅垂线(在AB上).经测量,左侧曲线AO上任一点D到MN的距离(米)与D到的距离a(米)之间满足关系式;右侧曲线BO上任一点F到MN的距离(米)与F到的距离b(米)之间满足关系式.已知点B到的距离为40米.(1)求桥AB的长度;(2)计划在谷底两侧建造平行于的桥墩CD和EF,且CE为80米,其中C
13、,E在AB上(不包括端点).桥墩EF每米造价k(万元)、桥墩CD每米造价(万元)(k0).问为多少米时,桥墩CD与EF的总造价最低?65(2020江苏统考高考真题)已知关于x的函数与在区间D上恒有(1)若,求h(x)的表达式;(2)若,求k的取值范围;(3)若求证:66(2020全国统考高考真题)设函数,曲线在点(,f()处的切线与y轴垂直(1)求b(2)若有一个绝对值不大于1的零点,证明:所有零点的绝对值都不大于167(2020全国统考高考真题)已知函数(1)讨论的单调性;(2)若有三个零点,求的取值范围68(2020全国统考高考真题)已知函数.(1)当时,讨论的单调性;(2)若有两个零点,
14、求的取值范围.69(2020全国统考高考真题)已知函数.(1)当a=1时,讨论f(x)的单调性;(2)当x0时,f(x)x3+1,求a的取值范围.70(2020全国统考高考真题)已知函数f(x)=2lnx+1(1)若f(x)2x+c,求c的取值范围;(2)设a0时,讨论函数g(x)=的单调性71(2020全国统考高考真题)已知函数f(x)=sin2xsin2x.(1)讨论f(x)在区间(0,)的单调性;(2)证明:;(3)设nN*,证明:sin2xsin22xsin24xsin22nx.72(2019天津高考真题)设函数为的导函数.()求的单调区间;()当时,证明;()设为函数在区间内的零点,
15、其中,证明.73(2019全国高考真题)已知函数.证明:(1)存在唯一的极值点;(2)有且仅有两个实根,且两个实根互为倒数.74(2019全国高考真题)已知函数.(1)讨论f(x)的单调性,并证明f(x)有且仅有两个零点;(2)设x0是f(x)的一个零点,证明曲线y=ln x 在点A(x0,ln x0)处的切线也是曲线的切线.75(2019全国高考真题)已知函数,为的导数证明:(1)在区间存在唯一极大值点;(2)有且仅有2个零点76(2019全国统考高考真题)已知函数.(1)讨论的单调性;(2)是否存在,使得在区间的最小值为且最大值为1?若存在,求出的所有值;若不存在,说明理由.77(2019
16、浙江高考真题)已知实数,设函数 (1)当时,求函数的单调区间;(2)对任意均有 求的取值范围.注:为自然对数的底数.78(2019江苏高考真题)定义首项为1且公比为正数的等比数列为“M数列”.(1)已知等比数列an满足:,求证:数列an为“M数列”;(2)已知数列bn满足:,其中Sn为数列bn的前n项和求数列bn的通项公式;设m为正整数,若存在“M数列”cn,对任意正整数k,当km时,都有成立,求m的最大值79(2019江苏高考真题)设函数,为f(x)的导函数(1)若a=b=c,f(4)=8,求a的值;(2)若ab,b=c,且f(x)和的零点均在集合中,求f(x)的极小值;(3)若,且f(x)
17、的极大值为M,求证:M80(2019北京高考真题)已知函数.()求曲线的斜率为1的切线方程;()当时,求证:;()设,记在区间上的最大值为M(a),当M(a)最小时,求a的值81(2019全国高考真题)已知函数.(1)讨论的单调性;(2)当时,记在区间的最大值为,最小值为,求的取值范围.82(2019天津高考真题)设函数,其中.()若,讨论的单调性;()若,(i)证明恰有两个零点(ii)设为的极值点,为的零点,且,证明.83(2019全国高考真题)已知函数f(x)=2sinxxcosxx,f(x)为f(x)的导数(1)证明:f(x)在区间(0,)存在唯一零点;(2)若x0,时,f(x)ax,求
18、a的取值范围84(2018北京高考真题)设函数=(1)若曲线在点(1,)处的切线与轴平行,求;(2)若在处取得极小值,求的取值范围85(2018北京高考真题)设函数.()若曲线在点处的切线斜率为0,求a;()若在处取得极小值,求a的取值范围.86(2018全国高考真题)已知函数(1)若,证明:当时,;当时,;(2)若是的极大值点,求87(2018全国高考真题)已知函数(1)求曲线在点处的切线方程;(2)证明:当时,88(2018浙江高考真题)已知函数(1)若在处导数相等,证明:;(2)若,证明:对于任意,直线与曲线有唯一公共点89(2018全国高考真题)已知函数(1)若,求的单调区间;(2)证
19、明:只有一个零点90(2018全国高考真题)已知函数(1)设是的极值点求,并求的单调区间;(2)证明:当时,91(2018江苏高考真题)记分别为函数的导函数若存在,满足且,则称为函数与的一个“点”(1)证明:函数与不存在“点”;(2)若函数与存在“点”,求实数的值;(3)已知函数,对任意,判断是否存在,使函数与在区间内存在“点”,并说明理由92(2018全国高考真题)已知函数(1)若,证明:当时,;(2)若在只有一个零点,求的值.93(2018天津高考真题)已知函数,其中a1.(I)求函数的单调区间;(II)若曲线在点处的切线与曲线在点 处的切线平行,证明:;(III)证明:当时,存在直线l,
20、使l是曲线的切线,也是曲线的切线.94(2018全国高考真题)已知函数(1)讨论的单调性;(2)若存在两个极值点,证明:95(2018天津高考真题)设函数,其中,且是公差为的等差数列.(I)若 求曲线在点处的切线方程;(II)若,求的极值;(III)若曲线与直线有三个互异的公共点,求d的取值范围.五、双空题96(2022全国统考高考真题)曲线过坐标原点的两条切线的方程为_,_97(2019北京高考真题)设函数f(x)=ex+aex(a为常数)若f(x)为奇函数,则a=_;若f(x)是R上的增函数,则a的取值范围是_试卷第15页,共15页参考答案:1B【分析】根据题意可知,即可解得,再根据即可解
21、出【详解】因为函数定义域为,所以依题可知,而,所以,即,所以,因此函数在上递增,在上递减,时取最大值,满足题意,即有故选:B.2D【分析】利用导数求得的单调区间,从而判断出在区间上的最小值和最大值.【详解】,所以在区间和上,即单调递增;在区间上,即单调递减,又,所以在区间上的最小值为,最大值为.故选:D3A【分析】由结合三角函数的性质可得;构造函数,利用导数可得,即可得解.【详解】方法一:构造函数因为当故,故,所以;设,所以在单调递增,故,所以,所以,所以,故选A方法二:不等式放缩因为当,取得:,故,其中,且当时,及此时,故,故所以,所以,故选A方法三:泰勒展开设,则,计算得,故选A.方法四:
22、构造函数因为,因为当,所以,即,所以;设,所以在单调递增,则,所以,所以,所以,故选:A方法五:【最优解】不等式放缩因为,因为当,所以,即,所以;因为当,取得,故,所以故选:A【整体点评】方法4:利用函数的单调性比较大小,是常见思路,难点在于构造合适的函数,属于通性通法;方法5:利用二倍角公式以及不等式放缩,即可得出大小关系,属于最优解4C【分析】设正四棱锥的高为,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围.【详解】球的体积为,所以球的半径,方法一:导数法设正四棱锥的底面边长为,高为,则,,所以,所以正四棱锥的体积,所以,当时,当时,所以当时,正四棱锥
23、的体积取最大值,最大值为,又时,时,,所以正四棱锥的体积的最小值为,所以该正四棱锥体积的取值范围是.故选:C.方法二:基本不等式法由方法一故所以当且仅当取到,当时,得,则当时,球心在正四棱锥高线上,此时,正四棱锥体积,故该正四棱锥体积的取值范围是5C【分析】构造函数, 导数判断其单调性,由此确定的大小.【详解】方法一:构造法设,因为,当时,当时,所以函数在单调递减,在上单调递增,所以,所以,故,即,所以,所以,故,所以,故,设,则,令,当时,函数单调递减,当时,函数单调递增,又,所以当时,所以当时,函数单调递增,所以,即,所以故选:C.方法二:比较法解: , , , , 令 则 , 故 在 上
24、单调递减, 可得 ,即 ,所以 ; , 令 则 , 令 ,所以 , 所以 在 上单调递增,可得 ,即 , 所以 在 上单调递增,可得 ,即 ,所以 故 6D【分析】由函数的奇偶性可排除A、B,结合导数判断函数的单调性可判断C,即可得解.【详解】对于A,该函数为非奇非偶函数,与函数图象不符,排除A;对于B,该函数为非奇非偶函数,与函数图象不符,排除B;对于C,则,当时,与图象不符,排除C.故选:D.7D【分析】先考虑函数的零点情况,注意零点左右附近函数值是否变号,结合极大值点的性质,对进行分类讨论,画出图象,即可得到所满足的关系,由此确定正确选项.【详解】若,则为单调函数,无极值点,不符合题意,
25、故.有和两个不同零点,且在左右附近是不变号,在左右附近是变号的.依题意,为函数的极大值点,在左右附近都是小于零的.当时,由,画出的图象如下图所示:由图可知,故.当时,由时,画出的图象如下图所示:由图可知,故.综上所述,成立.故选:D【点睛】本小题主要考查三次函数的图象与性质,利用数形结合的数学思想方法可以快速解答.8D【分析】解法一:根据导数几何意义求得切线方程,再构造函数,利用导数研究函数图象,结合图形确定结果;解法二:画出曲线的图象,根据直观即可判定点在曲线下方和轴上方时才可以作出两条切线.【详解】在曲线上任取一点,对函数求导得,所以,曲线在点处的切线方程为,即,由题意可知,点在直线上,可
26、得,令,则.当时,此时函数单调递增,当时,此时函数单调递减,所以,由题意可知,直线与曲线的图象有两个交点,则,当时,当时,作出函数的图象如下图所示:由图可知,当时,直线与曲线的图象有两个交点.故选:D.解法二:画出函数曲线的图象如图所示,根据直观即可判定点在曲线下方和轴上方时才可以作出两条切线.由此可知.故选:D.【点睛】解法一是严格的证明求解方法,其中的极限处理在中学知识范围内需要用到指数函数的增长特性进行估计,解法二是根据基于对指数函数的图象的清晰的理解与认识的基础上,直观解决问题的有效方法.9D【分析】根据导数的几何意义设出直线的方程,再由直线与圆相切的性质,即可得出答案.【详解】设直线
27、在曲线上的切点为,则,函数的导数为,则直线的斜率,设直线的方程为,即,由于直线与圆相切,则,两边平方并整理得,解得,(舍),则直线的方程为,即.故选:D.【点睛】本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题.10B【分析】求得函数的导数,计算出和的值,可得出所求切线的点斜式方程,化简即可.【详解】,因此,所求切线的方程为,即.故选:B.【点睛】本题考查利用导数求解函图象的切线方程,考查计算能力,属于基础题11C【解析】先判断时,在上恒成立;若在上恒成立,转化为在上恒成立【详解】,即,(1)当时,当时,故当时,在上恒成立;若在上恒成立,即在上恒成立,令,则,当函数单增,
28、当函数单减,故,所以当时,在上恒成立;综上可知,的取值范围是,故选C【点睛】本题考查分段函数的最值问题,关键利用求导的方法研究函数的单调性,进行综合分析12C【分析】先判定点是否为切点,再利用导数的几何意义求解.【详解】当时,即点在曲线上则在点处的切线方程为,即故选C【点睛】本题考查利用导数工具研究曲线的切线方程,渗透了直观想象、逻辑推理和数学运算素养采取导数法,利用函数与方程思想解题学生易在非切点处直接求导数而出错,首先证明已知点是否为切点,若是切点,可以直接利用导数求解;若不是切点,设出切点,再求导,然后列出切线方程13D【解析】通过求导数,确定得到切线斜率的表达式,求得,将点的坐标代入直
29、线方程,求得【详解】详解:,将代入得,故选D【点睛】本题关键得到含有a,b的等式,利用导数几何意义和点在曲线上得到方程关系14B【分析】先证不等式,再确定公比的取值范围,进而作出判断.【详解】令则,令得,所以当时,当时,因此, 若公比,则,不合题意;若公比,则但,即,不合题意;因此,选B.【点睛】构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如15D【详解】分析:利用奇函数偶次项系数为零求得,进而得到的解析式,再对求导得出切线的斜率,进而求得切线方程.详解:因为函数是奇函数,所以,解得,所以,所以,所以曲线在点处的切线方程为,化简可得,故选D.点睛:该题考查的是有关曲线在某个
30、点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果.16D【详解】分析:根据函数图象的特殊点,利用函数的导数研究函数的单调性,由排除法可得结果.详解:函数过定点,排除,求得函数的导数,由得,得或,此时函数单调递增,排除,故选D.点睛:本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根
31、据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.17AD【分析】根据三角函数的性质逐个判断各选项,即可解出【详解】由题意得:,所以,即,又,所以时,故对A,当时,由正弦函数图象知在上是单调递减;对B,当时,由正弦函数图象知只有1个极值点,由,解得,即为函数的唯一极值点;对C,当时,直线不是对称轴;对D,由得:,解得或,从而得:或,所以函数在点处的切线斜率为,切线方程为:即故选:AD18AC【分析】利用极值点的定义可判断A,结合的单调性、极值可判断B,利用平移可判断C;利用导数的几何意义判断D.【详解】由题,令得或,令得,所以在,上单调
32、递增,上单调递减,所以是极值点,故A正确;因,所以,函数在上有一个零点,当时,即函数在上无零点,综上所述,函数有一个零点,故B错误;令,该函数的定义域为,则是奇函数,是的对称中心,将的图象向上移动一个单位得到的图象,所以点是曲线的对称中心,故C正确;令,可得,又,当切点为时,切线方程为,当切点为时,切线方程为,故D错误.故选:AC.19BC【分析】方法一:转化题设条件为函数的对称性,结合原函数与导函数图象的关系,根据函数的性质逐项判断即可得解.【详解】方法一:对称性和周期性的关系研究对于,因为为偶函数,所以即,所以,所以关于对称,则,故C正确;对于,因为为偶函数,所以关于对称,由求导,和,得,
33、所以,所以关于对称,因为其定义域为R,所以,结合关于对称,从而周期,所以,故B正确,D错误;若函数满足题设条件,则函数(C为常数)也满足题设条件,所以无法确定的函数值,故A错误.故选:BC.方法二:【最优解】特殊值,构造函数法.由方法一知周期为2,关于对称,故可设,则,显然A,D错误,选BC.故选:BC.方法三:因为,均为偶函数,所以即,所以,则,故C正确;函数,的图象分别关于直线对称,又,且函数可导,所以,所以,所以,所以,故B正确,D错误;若函数满足题设条件,则函数(C为常数)也满足题设条件,所以无法确定的函数值,故A错误.故选:BC.【整体点评】方法一:根据题意赋值变换得到函数的性质,即
34、可判断各选项的真假,转化难度较高,是该题的通性通法;方法二:根据题意得出的性质构造特殊函数,再验证选项,简单明了,是该题的最优解20【分析】法一:依题可知,方程的两个根为,即函数与函数的图象有两个不同的交点,构造函数,利用指数函数的图象和图象变换得到的图象,利用导数的几何意义求得过原点的切线的斜率,根据几何意义可得出答案.【详解】方法一:【最优解】转化法,零点的问题转为函数图象的交点因为,所以方程的两个根为,即方程的两个根为,即函数与函数的图象有两个不同的交点,因为分别是函数的极小值点和极大值点,所以函数在和上递减,在上递增,所以当时,即图象在上方当时,即图象在下方,图象显然不符合题意,所以令
35、,则,设过原点且与函数的图象相切的直线的切点为,则切线的斜率为,故切线方程为,则有,解得,则切线的斜率为,因为函数与函数的图象有两个不同的交点,所以,解得,又,所以,综上所述,的取值范围为方法二:【通性通法】构造新函数,二次求导=0的两个根为因为分别是函数的极小值点和极大值点,所以函数在和上递减,在上递增,设函数,则,若,则在上单调递增,此时若,则在上单调递减,在上单调递增,此时若有和分别是函数且的极小值点和极大值点,则,不符合题意;若,则在上单调递减,此时若,则在上单调递增,在上单调递减,令,则,此时若有和分别是函数且的极小值点和极大值点,且,则需满足,即故,所以.【整体点评】法一:利用函数
36、的零点与两函数图象交点的关系,由数形结合解出,突出“小题小做”,是该题的最优解;法二:通过构造新函数,多次求导判断单调性,根据极值点的大小关系得出不等式,解出即可,该法属于通性通法21【分析】设出切点横坐标,利用导数的几何意义求得切线方程,根据切线经过原点得到关于的方程,根据此方程应有两个不同的实数根,求得的取值范围.【详解】,设切点为,则,切线斜率,切线方程为:,切线过原点,,整理得:,切线有两条,,解得或,的取值范围是,故答案为:22【分析】结合导数的几何意义可得,结合直线方程及两点间距离公式可得,化简即可得解.【详解】由题意,则,所以点和点,,所以,所以,所以,同理,所以.故答案为:【点
37、睛】关键点点睛:解决本题的关键是利用导数的几何意义转化条件,消去一个变量后,运算即可得解.23(答案不唯一,均满足)【分析】根据幂函数的性质可得所求的.【详解】取,则,满足,时有,满足,的定义域为,又,故是奇函数,满足.故答案为:(答案不唯一,均满足)24【分析】由可得出,考查直线与曲线的左、右支分别相切的情形,利用方程思想以及数形结合可判断各选项的正误.【详解】对于,当时,由,可得或,正确;对于,考查直线与曲线相切于点,对函数求导得,由题意可得,解得,所以,存在,使得只有一个零点,正确;对于,当直线过点时,解得,所以,当时,直线与曲线有两个交点,若函数有三个零点,则直线与曲线有两个交点,直线
38、与曲线有一个交点,所以,此不等式无解,因此,不存在,使得函数有三个零点,错误;对于,考查直线与曲线相切于点,对函数求导得,由题意可得,解得,所以,当时,函数有三个零点,正确.故答案为:.【点睛】思路点睛:已知函数的零点或方程的根的情况,求解参数的取值范围问题的本质都是研究函数的零点问题,求解此类问题的一般步骤:(1)转化,即通过构造函数,把问题转化成所构造函数的零点问题;(2)列式,即根据函数的零点存在定理或结合函数的图象列出关系式;(3)得解,即由列出的式子求出参数的取值范围25【分析】先验证点在曲线上,再求导,代入切线方程公式即可【详解】由题,当时,故点在曲线上求导得:,所以故切线方程为故
39、答案为:261【分析】由解析式知定义域为,讨论、,并结合导数研究的单调性,即可求最小值.【详解】由题设知:定义域为,当时,此时单调递减;当时,有,此时单调递减;当时,有,此时单调递增;又在各分段的界点处连续,综上有:时,单调递减,时,单调递增;故答案为:1.27【分析】根据条件得,再用圆心到直线距离表示三角形PAB面积,最后利用导数求最大值.【详解】设圆心到直线距离为,则,所以点P到AB的距离为或,且所以令(负值舍去)当时,;当时,因此当时,取最大值,即取最大值为,故答案为:【点睛】本题考查垂径定理、利用导数求最值,考查综合分析求解能力,属中档题.281【分析】由题意首先求得导函数的解析式,然
40、后得到关于实数a的方程,解方程即可确定实数a的值【详解】由函数的解析式可得:,则:,据此可得:,整理可得:,解得:.故答案为:.【点睛】本题主要考查导数的运算法则,导数的计算,方程的数学思想等知识,属于中等题.29【分析】设切线的切点坐标为,对函数求导,利用,求出,代入曲线方程求出,得到切线的点斜式方程,化简即可.【详解】设切线的切点坐标为,所以切点坐标为,所求的切线方程为,即.故答案为:.【点睛】本题考查导数的几何意义,属于基础题.30【分析】利用导数值确定切线斜率,再用点斜式写出切线方程【详解】,当时其值为,故所求的切线方程为,即【点睛】曲线切线方程的求法:(1)以曲线上的点(x0,f(x
41、0)为切点的切线方程的求解步骤:求出函数f(x)的导数f(x);求切线的斜率f(x0);写出切线方程yf(x0)f(x0)(xx0),并化简(2)如果已知点(x1,y1)不在曲线上,则设出切点(x0,y0),解方程组得切点(x0,y0),进而确定切线方程31.【分析】本题根据导数的几何意义,通过求导数,确定得到切线的斜率,利用直线方程的点斜式求得切线方程【详解】详解:所以,所以,曲线在点处的切线方程为,即【点睛】准确求导数是进一步计算的基础,本题易因为导数的运算法则掌握不熟,二导致计算错误求导要“慢”,计算要准,是解答此类问题的基本要求32.【分析】设出切点坐标,得到切线方程,然后求解方程得到
42、横坐标的值可得切点坐标.【详解】设点,则.又,当时,点A在曲线上的切线为,即,代入点,得,即,考查函数,当时,当时,且,当时,单调递增,注意到,故存在唯一的实数根,此时,故点的坐标为.【点睛】导数运算及切线的理解应注意的问题:一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点334.【分析】将原问题转化为切点与直线之间的距离,然后利用导函数确定切点坐标可得最小距离【详解】当直线平移到与曲线相切位置时,切点Q即为点P到直线的
43、距离最小.由,得,即切点,则切点Q到直线的距离为,故答案为【点睛】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法和公式法,利用数形结合和转化与化归思想解题.34【分析】求导,利用导数的几何意义计算即可【详解】解:则所以故答案为-3.【点睛】本题主要考查导数的计算和导数的几何意义,属于基础题35【分析】求导,可得斜率,进而得出切线的点斜式方程.【详解】由,得,则曲线在点处的切线的斜率为,则所求切线方程为,即.【点睛】求曲线在某点处的切线方程的步骤:求出函数在该点处的导数值即为切线斜率;写出切线的点斜式方程;化简整理.36【分析】方法一:利用导数判断函数在上的
44、单调性,确定零点位置,求出参数,再根据函数在上的单调性确定函数最值,即可解出.【详解】方法一:【通性通法】单调性法求导得,当时,函数在区间内单调递增,且,所以函数在内无零点;当时,函数在区间内单调递减,在区间内单调递增当时,;当时,要使函数在区间内有且仅有一个零点,只需,解得于是函数在区间上单调递增,在区间上单调递减,所以最大值与最小值之和为故答案为:方法二: 等价转化由条件知有唯一的正实根,于是令,则,所以在区间内单调递减,在区间内单调递增,且,当时,;当时,只需直线与的图像有一个交点,故,下同方法一方法三:【最优解】三元基本不等式同方法二得,当且仅当时取等号,要满足条件只需,下同方法一方法
45、四:等价转化由条件知有唯一的正实根,即方程有唯一的正实根,整理得,即函数与直线在第一象限内有唯一的交点于是平移直线与曲线相切时,满足题意,如图2设切点,因为,于是,解得,下同方法一【整体点评】方法一:利用导数得出函数在上的单调性,确定零点位置,求出参数,进而问题转化为闭区间上的最值问题,从而解出,是该类型题的通性通法;方法二:利用等价转化思想,函数在上有唯一零点转化为两函数图象有唯一交点,从而求出参数,使问题得解;方法三:通过三元基本不等式确定取最值条件,从而求出参数,使问题得解,是该题的最优解;方法四:将函数在上有唯一零点转化为直线与曲线相切,从而求出参数,使问题得解37【分析】方法一:由,
46、确定出函数的单调区间,减区间,从而确定出函数的最小值点,代入求得函数的最小值.【详解】方法一: 【通性通法】导数法令,得,即在区间内单调递增;令,得,即在区间内单调递减则故答案为:.方法二: 三元基本不等式的应用因为,所以当且仅当,即时,取等号根据可知,是奇函数,于是,此时故答案为:.方法三: 升幂公式多元基本不等式,当且仅当,即时,根据可知,是奇函数,于是故答案为:.方法四: 化同角多元基本不等式+放缩,当且仅当时等号成立故答案为:.方法五:万能公式换元+导数求最值设,则可化为,当时,;当时,对分母求导后易知,当时,有最小值故答案为:.方法六: 配方法,当且仅当即时,取最小值故答案为:.方法
47、七:【最优解】周期性应用导数法因为,所以,即函数的一个周期为,因此时,的最小值即为函数的最小值当时,当时, 因为,令,解得或,由,所以的最小值为故答案为:.【整体点评】方法一:直接利用导数判断函数的单调性,得出极值点,从而求出最小值,是求最值的通性通法;方法二:通过对函数平方,创造三元基本不等式的使用条件,从而解出;方法三:基本原理同方法三,通过化同角利用多元基本不等式求解,难度较高;方法四:通过化同角以及化同名函数,放缩,再结合多元基本不等式求解,难度较高;方法五:通过万能公式化简换元,再利用导数求出最值,该法也较为常规;方法六:通过配方,将函数转化成平方和的形式,构思巧妙;方法七:利用函数
48、的周期性,缩小函数的研究范围,再利用闭区间上的最值求法解出,解法常规,是该题的最优解38【分析】先求导数,再根据导数几何意义得切线斜率,最后根据点斜式求切线方程.【详解】【点睛】求曲线的切线要注意“过点P的切线”与“在点P处的切线”的差异,过点P的切线中,点P不一定是切点,点P也不一定在已知曲线上,而在点P处的切线,必以点P为切点.39e【分析】首先求导函数,然后结合导函数的运算法则整理计算即可求得最终结果.【详解】由函数的解析式可得:,则,即的值为e,故答案为.点睛:本题主要考查导数的运算法则,基本初等函数的导数公式等知识,意在考查学生的转化能力和计算求解能力.40(1)(2)(i);(ii
49、)证明见解析【分析】(1)求出可求切线方程;(2)(i)当时,曲线和有公共点即为在上有零点,求导后分类讨论结合零点存在定理可求.(ii)曲线和有公共点即,利用点到直线的距离得到,利用导数可证,从而可得不等式成立.【详解】(1),故,而,曲线在点处的切线方程为即.(2)(i)当时, 因为曲线和有公共点,故有解,设,故,故在上有解,设,故在上有零点,而,若,则恒成立,此时在上无零点,若,则在上恒成立,故在上为增函数,而,故在上无零点,故,设,则,故在上为增函数,而,故在上存在唯一零点,且时,;时,;故时,;时,;所以在上为减函数,在上为增函数,故,因为在上有零点,故,故,而,故即,设,则,故在上为
50、增函数,而,故.(ii)因为曲线和有公共点,所以有解,其中,若,则,该式不成立,故.故,考虑直线,表示原点与直线上的动点之间的距离,故,所以,下证:对任意,总有,证明:当时,有,故成立.当时,即证,设,则(不恒为零),故在上为减函数,故即成立.综上,成立.下证:当时,恒成立,则,故在上为增函数,故即恒成立.下证:在上恒成立,即证:,即证:,即证:,而,故成立.故,即成立.【点睛】思路点睛:导数背景下零点问题,注意利用函数的单调性结合零点存在定理来处理,而多变量的不等式的成立问题,注意从几何意义取构建不等式关系,再利用分析法来证明目标不等式.41(1)(2)在上单调递增.(3)证明见解析【分析】
51、(1)先求出切点坐标,在由导数求得切线斜率,即得切线方程;(2)在求一次导数无法判断的情况下,构造新的函数,再求一次导数,问题即得解;(3)令,即证,由第二问结论可知在0,+)上单调递增,即得证.【详解】(1)解:因为,所以,即切点坐标为,又,切线斜率切线方程为:(2)解:因为,所以,令,则, 在上单调递增,在上恒成立,在上单调递增.(3)解:原不等式等价于,令,即证,由(2)知在上单调递增,在上单调递增,又因为,所以命题得证.42(1)的减区间为,增区间为.(2)()见解析;()见解析.【分析】(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)()由题设构造关于切点横坐标的方程,根据
52、方程有3个不同的解可证明不等式成立,() ,则题设不等式可转化为,结合零点满足的方程进一步转化为,利用导数可证该不等式成立.【详解】(1),当,;当,故的减区间为,的增区间为.(2)()因为过有三条不同的切线,设切点为,故,故方程有3个不同的根,该方程可整理为,设,则,当或时,;当时,故在上为减函数,在上为增函数,因为有3个不同的零点,故且,故且,整理得到:且,此时,设,则,故为上的减函数,故,故.()当时,同()中讨论可得:故在上为减函数,在上为增函数,不妨设,则,因为有3个不同的零点,故且,故且,整理得到:,因为,故,又,设,则方程即为:即为,记则为有三个不同的根,设,要证:,即证,即证:
53、,即证:,即证:,而且,故,故,故即证:,即证:即证:,记,则,设,则,所以,故在上为增函数,故,所以,记,则,所以在为增函数,故,故即,故原不等式得证:【点睛】思路点睛:导数背景下的切线条数问题,一般转化为关于切点方程的解的个数问题,而复杂方程的零点性质的讨论,应该根据零点的性质合理转化需求证的不等式,常用的方法有比值代换等.43(1)的减区间为,增区间为.(2)(3)见解析【分析】(1)求出,讨论其符号后可得的单调性.(2)设,求出,先讨论时题设中的不等式不成立,再就结合放缩法讨论符号,最后就结合放缩法讨论的范围后可得参数的取值范围.(3)由(2)可得对任意的恒成立,从而可得对任意的恒成立
54、,结合裂项相消法可证题设中的不等式.【详解】(1)当时,则,当时,当时,故的减区间为,增区间为.(2)设,则,又,设,则,若,则,因为为连续不间断函数,故存在,使得,总有,故在为增函数,故,故在为增函数,故,与题设矛盾.若,则,下证:对任意,总有成立,证明:设,故,故在上为减函数,故即成立.由上述不等式有,故总成立,即在上为减函数,所以.当时,有,所以在上为减函数,所以.综上,.(3)取,则,总有成立,令,则,故即对任意的恒成立.所以对任意的,有,整理得到:,故,故不等式成立.【点睛】思路点睛:函数参数的不等式的恒成立问题,应该利用导数讨论函数的单调性,注意结合端点处导数的符号合理分类讨论,导
55、数背景下数列不等式的证明,应根据已有的函数不等式合理构建数列不等式.44(1)(2)【分析】(1)由导数确定函数的单调性,即可得解;(2)求导得,按照、及结合导数讨论函数的单调性,求得函数的极值,即可得解.【详解】(1)当时,则,当时,单调递增;当时,单调递减;所以;(2),则,当时,所以当时,单调递增;当时,单调递减;所以,此时函数无零点,不合题意;当时,在上,单调递增;在上,单调递减;又,由(1)得,即,所以,当时,则存在,使得,所以仅在有唯一零点,符合题意;当时,所以单调递增,又,所以有唯一零点,符合题意;当时,在上,单调递增;在上,单调递减;此时,由(1)得当时,所以,此时存在,使得,
56、所以在有一个零点,在无零点,所以有唯一零点,符合题意;综上,a的取值范围为.【点睛】关键点点睛:解决本题的关键是利用导数研究函数的极值与单调性,把函数零点问题转化为函数的单调性与极值的问题.45(1)3(2)【分析】(1)先由上的切点求出切线方程,设出上的切点坐标,由斜率求出切点坐标,再由函数值求出即可;(2)设出上的切点坐标,分别由和及切点表示出切线方程,由切线重合表示出,构造函数,求导求出函数值域,即可求得的取值范围.【详解】(1)由题意知,则在点处的切线方程为,即,设该切线与切于点,则,解得,则,解得;(2),则在点处的切线方程为,整理得,设该切线与切于点,则,则切线方程为,整理得,则,
57、整理得,令,则,令,解得或,令,解得或,则变化时,的变化情况如下表:01000则的值域为,故的取值范围为.46(1)(2)证明见的解析【分析】(1)由导数确定函数单调性及最值,即可得解;(2)利用分析法,转化要证明条件为,再利用导数即可得证.【详解】(1)方法一:常规求导的定义域为,则令,得当单调递减当单调递增,若,则,即所以的取值范围为方法二:同构处理由得:令,则即令,则故在区间上是增函数故,即所以的取值范围为(2)方法一:构造函数由题知,一个零点小于1,一个零点大于1,不妨设要证,即证因为,即证又因为,故只需证即证即证下面证明时,设,则设所以,而所以,所以所以在单调递增即,所以令所以在单调
58、递减即,所以;综上, ,所以.方法二:对数平均不等式由题意得:令,则,所以在上单调递增,故只有1个解又因为有两个零点,故两边取对数得:,即又因为,故,即下证因为不妨设,则只需证构造,则故在上单调递减故,即得证【点睛】关键点点睛 :本题是极值点偏移问题,关键点是通过分析法,构造函数证明不等式这个函数经常出现,需要掌握47(1)(2)【分析】(1)先算出切点,再求导算出斜率即可(2)求导,对分类讨论,对分两部分研究【详解】(1)的定义域为当时,所以切点为,所以切线斜率为2所以曲线在点处的切线方程为(2)设若,当,即所以在上单调递增,故在上没有零点,不合题意若,当,则所以在上单调递增所以,即所以在上
59、单调递增,故在上没有零点,不合题意若(1)当,则,所以在上单调递增所以存在,使得,即当单调递减当单调递增所以当当所以在上有唯一零点又没有零点,即在上有唯一零点(2)当设所以在单调递增所以存在,使得当单调递减当单调递增,又所以存在,使得,即当单调递增,当单调递减有而,所以当所以在上有唯一零点,上无零点即在上有唯一零点所以,符合题意所以若在区间各恰有一个零点,求的取值范围为【点睛】方法点睛:本题的关键是对的范围进行合理分类,否定和肯定并用,否定只需要说明一边不满足即可,肯定要两方面都说明.48(1)(2)见解析【分析】(1)根据导数可得函数的单调性,从而可得相应的最小值,根据最小值相等可求a.注意
60、分类讨论.(2)根据(1)可得当时,的解的个数、的解的个数均为2,构建新函数,利用导数可得该函数只有一个零点且可得的大小关系,根据存在直线与曲线、有三个不同的交点可得的取值,再根据两类方程的根的关系可证明三根成等差数列.【详解】(1)的定义域为,而,若,则,此时无最小值,故.的定义域为,而.当时,故在上为减函数,当时,故在上为增函数,故.当时,故在上为减函数,当时,故在上为增函数,故.因为和有相同的最小值,故,整理得到,其中,设,则,故为上的减函数,而,故的唯一解为,故的解为.综上,.(2)方法一:由(1)可得和的最小值为.当时,考虑的解的个数、的解的个数.设,当时,当时,故在上为减函数,在上
61、为增函数,所以,而,设,其中,则,故在上为增函数,故,故,故有两个不同的零点,即的解的个数为2.设,当时,当时,故在上为减函数,在上为增函数,所以,而,有两个不同的零点即的解的个数为2.当,由(1)讨论可得、仅有一个解,当时,由(1)讨论可得、均无根,故若存在直线与曲线、有三个不同的交点,则.设,其中,故,设,则,故在上为增函数,故即,所以,所以在上为增函数,而,故上有且只有一个零点,且:当时,即即,当时,即即,因此若存在直线与曲线、有三个不同的交点,故,此时有两个不同的根,此时有两个不同的根,故,所以即即,故为方程的解,同理也为方程的解又可化为即即,故为方程的解,同理也为方程的解,所以,而,
62、故即.方法二:由知,且在上单调递减,在上单调递增;在上单调递减,在上单调递增,且时,此时,显然与两条曲线和共有0个交点,不符合题意;时,此时,故与两条曲线和共有2个交点,交点的横坐标分别为0和1;时,首先,证明与曲线有2个交点,即证明有2个零点,所以在上单调递减,在上单调递增,又因为,令,则,所以在上存在且只存在1个零点,设为,在上存在且只存在1个零点,设为其次,证明与曲线和有2个交点,即证明有2个零点,所以上单调递减,在上单调递增,又因为,令,则,所以在上存在且只存在1个零点,设为,在上存在且只存在1个零点,设为再次,证明存在b,使得因为,所以,若,则,即,所以只需证明在上有解即可,即在上有
63、零点,因为,所以在上存在零点,取一零点为,令即可,此时取则此时存在直线,其与两条曲线和共有三个不同的交点,最后证明,即从左到右的三个交点的横坐标成等差数列,因为所以,又因为在上单调递减,即,所以,同理,因为,又因为在上单调递增,即,所以,又因为,所以,即直线与两条曲线和从左到右的三个交点的横坐标成等差数列.【点睛】思路点睛:函数的最值问题,往往需要利用导数讨论函数的单调性,此时注意对参数的分类讨论,而不同方程的根的性质,注意利用方程的特征找到两类根之间的关系.49(I);(II)证明见解析;(III)【分析】(I)求出在处的导数,即切线斜率,求出,即可求出切线方程;(II)令,可得,则可化为证
64、明与仅有一个交点,利用导数求出的变化情况,数形结合即可求解;(III)令,题目等价于存在,使得,即,利用导数即可求出的最小值.【详解】(I),则,又,则切线方程为;(II)令,则,令,则,当时,单调递减;当时,单调递增,当时,当时,画出大致图像如下:所以当时,与仅有一个交点,令,则,且,当时,则,单调递增,当时,则,单调递减,为的极大值点,故存在唯一的极值点;(III)由(II)知,此时,所以,令,若存在a,使得对任意成立,等价于存在,使得,即,当时,单调递减,当时,单调递增,所以,故,所以实数b的取值范围.【点睛】关键点睛:第二问解题的关键是转化为证明与仅有一个交点;第三问解题的关键是转化为
65、存在,使得,即.50(1)1;(2)见解析;(3)见解析.【分析】(1)利用公式计算可得.(2)利用导数讨论函数的单调性,结合及极值点的范围可得的最小正零点.(3)利用期望的意义及根的范围可得相应的理解说明.【详解】(1).(2)设,因为,故,若,则,故.,因为,故有两个不同零点,且,且时,;时,;故在,上为增函数,在上为减函数,若,因为在为增函数且,而当时,因为在上为减函数,故,故为的一个最小正实根,若,因为且在上为减函数,故1为的一个最小正实根,综上,若,则.若,则,故.此时,故有两个不同零点,且,且时,;时,;故在,上为增函数,在上为减函数,而,故,又,故在存在一个零点,且.所以为的一个
66、最小正实根,此时,故当时,.(3)意义:每一个该种微生物繁殖后代的平均数不超过1,则若干代必然灭绝,若繁殖后代的平均数超过1,则若干代后被灭绝的概率小于1.51(1)答案见解析;(2)证明见解析.【分析】(1)首先求得导函数的解析式,然后分类讨论确定函数的单调性即可;(2)由题意结合(1)中函数的单调性和函数零点存在定理即可证得题中的结论.【详解】(1)由函数的解析式可得:,当时,若,则单调递减,若,则单调递增;当时,若,则单调递增,若,则单调递减,若,则单调递增;当时,在上单调递增;当时,若,则单调递增,若,则单调递减,若,则单调递增;(2)若选择条件:由于,故,则,而,而函数在区间上单调递
67、增,故函数在区间上有一个零点.,由于,故,结合函数的单调性可知函数在区间上没有零点.综上可得,题中的结论成立.若选择条件:由于,故,则,当时,而函数在区间上单调递增,故函数在区间上有一个零点.当时,构造函数,则,当时,单调递减,当时,单调递增,注意到,故恒成立,从而有:,此时:,当时,取,则,即:,而函数在区间上单调递增,故函数在区间上有一个零点.,由于,故,结合函数的单调性可知函数在区间上没有零点.综上可得,题中的结论成立.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,对导数的应用的考查主要从以下几个
68、角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数(3)利用导数求函数的最值(极值),解决生活中的优化问题(4)考查数形结合思想的应用52(1);(2)函数的增区间为、,单调递减区间为,最大值为,最小值为.【分析】(1)求出、的值,利用点斜式可得出所求切线的方程;(2)由可求得实数的值,然后利用导数分析函数的单调性与极值,由此可得出结果.【详解】(1)当时,则,此时,曲线在点处的切线方程为,即;(2)因为,则,由题意可得,解得,故,列表如下:增极大值减极小值增所以,函数的增区间为、,单调递减区间为.当时,;当时,.所以
69、,.53(1)时,在上单调递增;时,函数的单调减区间为,单调增区间为;(2);(3)证明见解析.【分析】(1)首先求得导函数的解析式,然后分类讨论即可确定函数的单调性;(2)将原问题进行等价转化,然后构造新函数,利用导函数研究函数的性质并进行放缩即可确定实数a的取值范围;(3)方法一:结合(2)的结论将原问题进行等价变形,然后利用分析法即可证得题中的结论成立.【详解】(1),若,则,所以在上单调递增;若,当时,单调递减,当时,单调递增.综上可得,时,在上单调递增;时,函数的单调减区间为,单调增区间为.(2)有2个不同零点有2个不同解有2个不同的解,令,则,记,记,又,所以时,时,则在单调递减,
70、单调递增,.即实数的取值范围是.(3)方法一【最优解】:有2个不同零点,则,故函数的零点一定为正数.由(2)可知有2个不同零点,记较大者为,较小者为,注意到函数在区间上单调递减,在区间上单调递增,故,又由知,要证,只需,且关于的函数在上单调递增,所以只需证,只需证,只需证,只需证在时为正,由于,故函数单调递增,又,故在时为正,从而题中的不等式得证.方法二:分析+放缩法有2个不同零点,不妨设,由得(其中)且要证,只需证,即证,只需证又,所以,即所以只需证而,所以,又,所以只需证所以,原命题得证方法三:若且,则满足且,由()知有两个零点且又,故进一步有由可得且,从而因为,所以,故只需证又因为在区间
71、内单调递增,故只需证,即,注意时有,故不等式成立【整体点评】本题第二、三问均涉及利用导数研究函数零点问题,其中第三问难度更大,涉及到三种不同的处理方法,方法一:直接分析零点,将要证明的不等式消元,代换为关于的函数,再利用零点反代法,换为关于的不等式,移项作差构造函数,利用导数分析范围.方法二:通过分析放缩,找到使得结论成立的充分条件,方法比较冒险!方法三:利用两次零点反代法,将不等式化简,再利用函数的单调性,转化为与0比较大小,代入函数放缩得到结论.54(1);(2).【分析】(1)根据圆的几何性质可得出关于的等式,即可解出的值;(2)设点、,利用导数求出直线、,进一步可求得直线的方程,将直线
72、的方程与抛物线的方程联立,求出以及点到直线的距离,利用三角形的面积公式结合二次函数的基本性质可求得面积的最大值.【详解】(1)方法一:利用二次函数性质求最小值由题意知,设圆M上的点,则所以从而有因为,所以当时,又,解之得,因此方法二【最优解】:利用圆的几何意义求最小值抛物线的焦点为,所以,与圆上点的距离的最小值为,解得;(2)方法一:切点弦方程+韦达定义判别式求弦长求面积法抛物线的方程为,即,对该函数求导得,设点、,直线的方程为,即,即,同理可知,直线的方程为,由于点为这两条直线的公共点,则,所以,点A、的坐标满足方程,所以,直线的方程为,联立,可得,由韦达定理可得,所以,点到直线的距离为,所
73、以,由已知可得,所以,当时,的面积取最大值.方法二【最优解】:切点弦法+分割转化求面积+三角换元求最值 同方法一得到过P作y轴的平行线交于Q,则P点在圆M上,则故当时的面积最大,最大值为方法三:直接设直线AB方程法设切点A,B的坐标分别为,设,联立和抛物线C的方程得整理得判别式,即,且抛物线C的方程为,即,有则,整理得,同理可得联立方程可得点P的坐标为,即将点P的坐标代入圆M的方程,得,整理得由弦长公式得点P到直线的距离为所以,其中,即当时,【整体点评】(1)方法一利用两点间距离公式求得关于圆M上的点的坐标的表达式,进一步转化为关于的表达式,利用二次函数的性质得到最小值,进而求得的值;方法二,
74、利用圆的性质,与圆上点的距离的最小值,简洁明快,为最优解;(2)方法一设点、,利用导数求得两切线方程,由切点弦方程思想得到直线的坐标满足方程,然手与抛物线方程联立,由韦达定理可得,利用弦长公式求得的长,进而得到面积关于坐标的表达式,利用圆的方程转化得到关于的二次函数最值问题;方法二,同方法一得到,过P作y轴的平行线交于Q,则由求得面积关于坐标的表达式,并利用三角函数换元求得面积最大值,方法灵活,计算简洁,为最优解;方法三直接设直线,联立直线和抛物线方程,利用韦达定理判别式得到,且利用点在圆上,求得的关系,然后利用导数求得两切线方程,解方程组求得P的坐标,进而利用弦长公式和点到直线距离公式求得面
75、积关于的函数表达式,然后利用二次函数的性质求得最大值;55(1);(2)证明见详解【分析】(1)由题意求出,由极值点处导数为0即可求解出参数;(2)由(1)得,且,分类讨论和,可等价转化为要证,即证在和上恒成立,结合导数和换元法即可求解【详解】(1)由,又是函数的极值点,所以,解得;(2)方法一:转化为有分母的函数由()知,其定义域为要证,即证,即证()当时,即证令,因为,所以在区间内为增函数,所以()当时,即证,由()分析知在区间内为减函数,所以综合()()有方法二 【最优解】:转化为无分母函数由(1)得,且,当 时,要证, ,即证,化简得;同理,当时,要证, ,即证,化简得;令,再令,则,
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
