黑龙江省虎林高级中学高中数学课件:1.1回归分析的基本思想及其初步应用1选修1-2.ppt
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 黑龙江省虎林高级中学高中数学课件:1.1回归分析的基本思想及其初步应用1 选修1-2 黑龙江省 虎林 高级中学 高中数学 课件 1.1 回归 分析 基本 思想 及其 初步 应用 选修
- 资源描述:
-
1、2025/12/11.1回归分析的基本思想及其初步应用高二数学 选修1-2 比较数学3中“回归”增加的内容数学统计1.画散点图2.了解最小二乘法的思想3.求回归直线方程ybxa4.用回归直线方程解决应用问题选修-统计案例5.引入线性回归模型ybxae6.了解模型中随机误差项e产生的原因7.了解相关指数 R2 和模型拟合的效果之间的关系8.了解残差图的作用9.利用线性回归模型解决一类非线性回归问题10.正确理解分析方法与结果问题1:正方形的面积y与正方形的边长x之间的函数关系是y=x2确定性关系问题2:某水田水稻产量y与施肥量x之间是否-有一个确定性的关系?例如:在 7 块并排、形状大小相同的试
2、验田上 进行施肥量对水稻产量影响的试验,得到如下所示的一组数据:施化肥量x 15 20 25 30 35 40 45水稻产量y 330 345 365 405 445 450 455复习、变量之间的两种关系自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系。1、定义:1):相关关系是一种不确定性关系;注对具有相关关系的两个变量进行统计分析的方法叫回归分析。2):2、现实生活中存在着大量的相关关系。如:人的身高与年龄;产品的成本与生产数量;商品的销售额与广告费;家庭的支出与收入。等等负相关正相关什么是回归分析:“回归”一词是由英国生物学家F.Galton在研究人体身高的
3、遗传问题时首先提出的。根据遗传学的观点,子辈的身高受父辈影响,以X记父辈身高,Y记子辈身高。虽然子辈身高一般受父辈影响,但同样身高的父亲,其子身高并不一致,因此,X和Y之间存在一种相关关系。一般而言,父辈身高者,其子辈身高也高,依此推论,祖祖辈辈遗传下来,身高必然向两极分化,而事实上并非如此,显然有一种力量将身高拉向中心,即子辈的身高有向中心回归的特点。“回归”一词即源于此。虽然这种向中心回归的现象只是特定领域里的结论,并不具有普遍性,但从它所描述的关于X为自变量,Y为不确定的因变量这种变量间的关系看,和我们现在的回归含义是相同的。不过,现代回归分析虽然沿用了“回归”一词,但内容已有很大变化,
4、它是一种应用于许多领域的广泛的分析研究方法,在经济理论研究和实证研究中也发挥着重要作用。回归分析的内容与步骤:统计检验通过后,最后是利用回归模型,根据自变量去估计、预测因变量。回归分析通过一个变量或一些变量的变化解释另一变量的变化。其主要内容和步骤是:首先根据对问题的分析判断,变量分为自变量和因变量;其次,设法找出合适的数学方程式(即回归模型)描述变量间的关系;由于涉及到的变量具有不确定性,接着还要对回归模型进行统计检验;最小二乘法:称为样本点的中心。对两个变量进行的线性分析叫做线性回归分析。2、回归直线方程:相应的直线叫做回归直线。所求直线方程叫做回归直-线方程;其中例1 从某大学中随机选取
5、8名女大学生,其身高和体重数据如表1-1所示。编号12345678身高/cm165165 157 170 175 165 155 170体重/kg4857505464614359求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。案例1:女大学生的身高与体重解:1、选取身高为自变量x,体重为因变量y,作散点图:2、由散点图知道身高和体重有比较好的线性相关关系,因此可以用线性回归方程刻画它们之间的关系。分析:由于问题中要求根据身高预报体重,因此选取身高为自变量,体重为因变量2.回归方程:1.散点图;例1 从某大学中随机选取8名女大学生,其身高和体重数据如表
6、1-1所示。编号12345678身高/cm165165 157 170 175 165 155 170体重/kg4857505464614359求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。案例1:女大学生的身高与体重解:1、选取身高为自变量x,体重为因变量y,作散点图:2、由散点图知道身高和体重有比较好的线性相关关系,因此可以用线性回归方程刻画它们之间的关系。3、从散点图还看到,样本点散布在某一条直线的附近,而不是在一条直线上,所以不能用一次函数y=bx+a描述它们关系。探究:身高为172cm的女大学生的体重一定是60.316kg吗?如果不是,你
7、能解析一下原因吗?我们可以用下面的线性回归模型来表示:y=bx+a+e,其中a和b为模型的未知参数,e称为随机误差。思考:产生随机误差项e的原因是什么?随机误差e的来源(可以推广到一般):1、忽略了其它因素的影响:影响身高 y 的因素不只是体重 x,可能还包括遗传基因、饮食习惯、生长环境等因素;2、用线性回归模型近似真实模型所引起的误差;3、身高 y 的观测误差。以上三项误差越小,说明我们的回归模型的拟合效果越好。函数模型与回归模型之间的差别函数模型:回归模型:可以提供选择模型的准则函数模型与回归模型之间的差别函数模型:回归模型:线性回归模型y=bx+a+e增加了随机误差项e,因变量y的值由自
8、变量x和随机误差项e共同确定,即自变量x只能解析部分y的变化。在统计中,我们也把自变量x称为解析变量,因变量y称为预报变量。所以,对于身高为172cm的女大学生,由回归方程可以预报其体重为思考:如何刻画预报变量(体重)的变化?这个变化在多大程度上与解析变量(身高)有关?在多大程度上与随机误差有关?假设身高和随机误差的不同不会对体重产生任何影响,那么所有人的体重将相同。在体重不受任何变量影响的假设下,设8名女大学生的体重都是她们的平均值,即8个人的体重都为54.5kg。54.554.554.554.554.554.554.554.5体重/kg170155165175170157165165身高/
9、cm87654321编号54.5kg在散点图中,所有的点应该落在同一条水平直线上,但是观测到的数据并非如此。这就意味着预报变量(体重)的值受解析变量(身高)或随机误差的影响。对回归模型进行统计检验5943616454505748体重/kg170155165175170157165165身高/cm87654321编号例如,编号为6的女大学生的体重并没有落在水平直线上,她的体重为61kg。解析变量(身高)和随机误差共同把这名学生的体重从54.5kg“推”到了61kg,相差6.5kg,所以6.5kg是解析变量和随机误差的组合效应。编号为3的女大学生的体重并也没有落在水平直线上,她的体重为50kg。解
10、析变量(身高)和随机误差共同把这名学生的体重从50kg“推”到了54.5kg,相差-4.5kg,这时解析变量和随机误差的组合效应为-4.5kg。用这种方法可以对所有预报变量计算组合效应。数学上,把每个效应(观测值减去总的平均值)的平方加起来,即用表示总的效应,称为总偏差平方和。在例1中,总偏差平方和为354。5943616454505748体重/kg170155165175170157165165身高/cm87654321编号那么,在这个总的效应(总偏差平方和)中,有多少来自于解析变量(身高)?有多少来自于随机误差?假设随机误差对体重没有影响,也就是说,体重仅受身高的影响,那么散点图中所有的点
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-494499.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
四年级下语文图片素材-多梦的季节_湘教版.ppt
