2021版高考数学一轮复习 易错考点排查练 立体几何 文(含解析)北师大版.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021版高考数学一轮复习 易错考点排查练 立体几何 文含解析北师大版 2021 高考 数学 一轮 复习 考点 排查 解析 北师大
- 资源描述:
-
1、易错考点排查练立 体 几 何1.和是两个不重合的平面,在下列条件中可判定平面和平行的是()A.和都垂直于平面B.内不共线的三点到的距离相等C.l,m是平面内的直线且l,mD.l,m是两条异面直线且l,m,m,l【解析】选D.对于A,可平行也可相交;对于B三个点可在平面同侧或异侧,对于C,l,m在平面内可平行,可相交.对于D正确证明如下:过直线l,m分别作平面与平面,相交,设交线分别为l1,m1与l2,m2,由已知l,l得ll1,ll2,从而l1l2,则l1,同理m1,所以.2.给出下列命题:有一条侧棱与底面两边垂直的棱柱是直棱柱;底面为正多边形的棱柱为正棱柱;顶点在底面上的射影到底面各顶点的距
2、离相等的棱锥是正棱锥;A,B为球面上相异的两点,则通过A,B的大圆有且只有一个.其中正确说法的个数是()A.0个B.1个C.2个D.3个【解析】选A.若侧棱与底面两条平行的两边垂直,则侧棱与底面不一定垂直,此时的棱柱不一定是直棱柱,故错误;底面为正多边形的直棱柱为正棱柱,故错误;顶点在底面上的射影到底面各顶点的距离相等的棱锥,表示顶点在底面的射影落在底面的外心上,不一定是正棱锥,故错误;当A,B为球的直径的两个端点时,通过A,B的大圆有无数个,故错误.3.如图,在下列四个正方体中,P,R,Q,M,N,G,H为所在棱的中点,则在这四个正方体中,阴影平面与P,R,Q所在平面平行的是()【解析】选A
3、.A中,因为PQACA1C1,所以可得PQ平面A1BC1,又RQA1B,可得RQ平面A1BC1,从而平面PQR平面A1BC1;B中,作截面可得P,Q,R所在平面平面A1BN=HN(H为C1D1中点),如图C中,作截面可得P,Q,R所在平面平面HGN=HN(H为C1D1中点),如图:D中,作截面可得QN,C1M为两条相交直线,因此P,Q,R所在平面与平面A1MC1不平行,如图:4.已知m,n是两条不重合的直线,是两个不重合的平面,下列命题正确的是()A.若m,m,n,n,则B.若mn,m,n,则C.若mn,m,n,则D.若mn,m,n,则【解析】选B.A选项,若m,m,n,n,则或与相交,故A错
4、;B选项,若mn,m,则n,又n,是两个不重合的平面,则,故B正确;C选项,若mn,m,则n或n或n与相交,又n,是两个不重合的平面,则或与相交;故C错;D选项,若mn,m,n,是两个不重合的平面,则或与相交,故D错.5.如图,是棱长为1的正方体的平面展开图,则在这个正方体中,以下结论正确的是()A.点A到EF的距离为B.三棱锥C-DMN的体积是C.EF与平面CDN所成的角是45D.EF与MN所成的角是60【解析】选D.根据正方体的平面展开图,画出它的立体图形如图所示,对于A,连接ND,与EF交于O点,连接AO,则AO的长即点A到EF的距离,AO=,故A错误;对于B,三棱锥C-DMN的体积是=
5、,故B错误;对于C,F点到平面CDN的距离为,所以EF与平面CDN所成的角的正弦值为=,故C错误;对于D,EF与MN所成的角即MC与MN所成的角,显然是60.6.有一个球的内接圆锥,其底面圆周和顶点均在球面上,且底面积为3.已知球的半径R=2,则此圆锥的侧面积为()A.2B.6C.6或2D.4【解析】选C.圆锥CAB,D是底面圆心,O为球心, r2=3,所以r=,(1)如图,OD=1=CD,D在OC上,所以CB=2,S侧=2rCB=2.(2)如图,OD=1,所以CD=OC+OD=2+1=3,所以S侧=2rCB=22=6.7.已知直线l平面,直线m平面,则下列四个命题正确的是()lm;lm;lm
6、;lm.A.B.C.D.【解析】选D.因为直线l平面,直线m平面,若,则l平面,则有lm,正确;如图,由图可知不正确;因为直线l平面,lm,所以m平面,又m平面,所以,所以正确;由图可知不正确;所以正确的命题为.8.正方体ABCD-A1B1C1D1的棱长为1,点M在棱AB上,且AM=,点P 在平面ABCD上,且动点P 到直线A1D1的距离的平方与点P 到点M的距离的平方的差为1,在以AB,AD为坐标轴的平面直角坐标系中,动点P的轨迹是()A.圆B.抛物线C.双曲线D.直线【解析】选B.如图所示:正方体ABCD-A1B1C1D1中,作PQAD,Q为垂足,则PQ面ADD1A1,过点Q作QRD1A1
7、,则D1A1面PQR,PR即为点P到直线A1D1的距离,由题意可得PR2-PQ2=RQ2=1.又已知PR2-PM2=1,所以PM=PQ,即P 到点M的距离等于P到AD的距离,根据抛物线的定义可得,点P 的轨迹是抛物线.9.点A、B在以PC为直径的球O的表面上,且ABBC,AB=2,BC=4,若球O的表面积是24,则异面直线PB和AC所成角的余弦值为()A.B.C.D.【解析】选C.设球O的半径为R,则4R2=24,故R=,如图所示:分别取PA,AB,BC的中点M,N,E,连接MN,NE,ME,AE,易知,PA平面ABC,由于ABBC,所以AC=2,所以PA=2,因为E为BC的中点,则AE=2,
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
