2021秋九年级数学上册 第22章 一元二次方程22.2 一元二次方程的解法3 配方法教学设计(新版)华东师大版.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021秋九年级数学上册 第22章 一元二次方程22.2 一元二次方程的解法3 配方法教学设计新版华东师大版 2021 九年级 数学 上册 22 一元 二次方程 22.2 解法 配方 教学 设计 新版
- 资源描述:
-
1、22 配方法课时安排 3课时从容说课 配方法是继探索一元二次方程近似解的基础上研究的一种求精确解的方法它是一元二次方程的解法的通法因为用配方法解一元二次方程比较麻烦,一个一元二次方程需配一次方,所以在实际解一元二次方程时,一般不用配方法但是,配方法是导出求根公式的关键,且在以后的学习中,会常常用到配方法因此,要理解配方法,并会用配方法解一元二次方程. 本节的重点、难点是配方法根据课程的特点,以及学生的认知结构特点,本节内容分三课时 在教学时,首先从前面两节课的实例引入求精确解.因为我们已经能解形如(x+a)2=b(b0)的方程,所以想到要求一个一元二次方程的精确解时,是否可把方程转化为已经能解
2、的方程,这时引入了一元二次方程的解法配方法 配方法的关键是正确配方,而要正确配方就必须熟悉完全平方式的特征 教学方法主要是学生自主探索、发现的方法课 题22.2 配方法教学目标 (一)教学知识点 1会用开平方法解形如(x+m)2=n(n0)的方程 2理解一元二次方程的解法配方法 (二)能力训练要求 1会用开平方法解形如(x+m)2=n(n0)的方程;理解配方法 2体会转化的数学思想方法 3能根据具体问题的实际意义检验结果的合理性 (三)情感与价值观要求 通过师生的共同活动,学生的进一步操作来增强其数学应用意识和能力教学重点 利用配方法解一元二次方程教学难点 把一元二次方程通过配方转化为(x+m
3、)2n(n0)的形式教学方法 讲练结合法教具准备 投影片六张: 第一张:问题(记作投影片221 A) 第二张:议一议(记作投影片 221 B) 第三张:议一议(记作投影片 221 C) 第四张:想一想(记作投影片221 D) 第五张:做一做(记作投影片221 E) 第六张:例题(记作投影片221 F)教学过程 创设现实情景,引入新课 师前面我们曾学习过平方根的意义及其性质,现在来回忆一下:什么叫做平方根?平方根有哪些性质? 生甲如果一个数的平方等于a,那么这个数就叫做a的平方根。 用式子表示:若x2=a,则x叫做a的平方根 生乙平方根有下列性质: (1)一个正数有两个平方根,这两个平方根是互为
4、相反数的 (2)零的平方根是零 (3)负数没有平方根 师很好,那你能求出适合等式x2=4的x的值吗? 生由x24可知,x就是4的平方根因此x的值为2和-2 师很好;下面我们来看上两节课研究过的问题(出示投影片221 A)如图,一个长为10 m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8 m,如果梯子的顶端下滑1 m,那么梯子的底端滑动多少米? 师由前节课的分析可知:梯子底端滑动的距离x(m)满足x2+12x-150上节课我们已求出了x的近似值,那么你能设法求出它的精确值吗? 这节课我们就来研究一元二次方程的解法 讲授新课 师我们已经学习了一元二次方程的定义及有关概念,现在同学们来讨论一下:
5、你能解哪些一元二次方程? 生甲等式x2=4就是一元二次方程,像这样类型的方程我们就能解. 生乙方程(x+3)29,我们也可以解,即是要求(x+3),使它的平方等于9,而9的平方根是3和-3,所以(x+3)就等于3或-3,因此x0或x-6 师乙同学分析得很好,大家听清楚了没有?好,下面大家看大屏幕(出示投影片 221 B)你会解下列一元二次方程吗?你是怎么做的?(1)x25; (2)3x20;(3)x2-40; (4)2x2-500;(5)(x+2)25; (6)(x-3)26;(7)2x2+500 生甲方程(1)的解为 ,-,因为x是5的平方根 方程(2)的解为0,因为方程3x20可以化为x2
6、0,即x是0的平方根 生乙方程(3)可以通过移项化为方程(1)的形式,即x24,所以方程(3)的根为2,-2 方程(4)也可以通过移项化为方程(2)的形式,即2x250,然后再化为x225,因此方程(4)的根为5,-5 生丙解方程(5)和(6)时,只要把(x+2)和(x-3)当作整体看待,其形式就如方程(1),这样方程(5)和(6)即可求解 方程(5)就是求(x+2),使它的平方为5,则x+2就等于 或- ,因此,x就等于-2+或-2- 方程(6)就是求(x-3),使它的平方为6,则(x-3)就等于 或- ,因此,x等于3+ 或3- 生丁方程(7)通过移项得2x2-50而由平方根的性质可知:负
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-508095.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
