分享
分享赚钱 收藏 举报 版权申诉 / 11

类型专题09 二次函数与矩形正方形存在型问题-2019版突破中考数学压轴之学霸秘笈大揭秘(学生版)学霸冲冲冲shop348121278.taobao.com.doc

  • 上传人:a****
  • 文档编号:513222
  • 上传时间:2025-12-09
  • 格式:DOC
  • 页数:11
  • 大小:1.18MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    专题09 二次函数与矩形正方形存在型问题-2019版突破中考数学压轴之学霸秘笈大揭秘学生版学霸冲冲冲shop348121278.taobao.com 专题 09 二次 函数 矩形 正方形 存在 问题
    资源描述:

    1、【典例分析】例1 如图,抛物线顶点P(1,4),与y轴交于点C(0,3),与x轴交于点A,B(1)求抛物线的解析式(2)Q是抛物线上除点P外一点,BCQ与BCP的面积相等,求点Q的坐标(3)若M,N为抛物线上两个动点,分别过点M,N作直线BC的垂线段,垂足分别为D,E是否存在点M,N使四边形MNED为正方形?如果存在,求正方形MNED的边长;如果不存在,请说明理由例2如图,已知抛物线与轴分别交于原点和点,与对称轴交于点.矩形的边在轴正半轴上,且,边,与抛物线分别交于点,.当矩形沿轴正方向平移,点,位于对称轴的同侧时,连接,此时,四边形的面积记为;点,位于对称轴的两侧时,连接,此时五边形的面积记

    2、为.将点与点重合的位置作为矩形平移的起点,设矩形平移的长度为.(1)求出这条抛物线的表达式;(2)当时,求的值;(3)当矩形沿着轴的正方向平移时,求关于的函数表达式,并求出为何值时,有最大值,最大值是多少?例3如图,抛物线的顶点为()求抛物线的函数表达式()若抛物线形与关于轴对称,求抛物线的函数表达式()在()的基础上,设上的点、始终与上的点、分别关于轴对称,是否存在点、(、分别位于抛物线对称轴两侧,且在的左侧),使四边形为正方形?若存在,求出点的坐标;若不存在,说明理由例4如图,正方形ABCD的顶点A、B分别在y轴和x轴上,且A点的坐标为(0,1),正方形的边长为. (1) 直接写出D、C两

    3、点的坐标;(2)求经过A、D、C三点的抛物线的关系式;(3)若正方形以每秒个单位长度的速度匀速沿射线下滑,直至顶点落在轴上时停 止设正方形落在轴下方部分的面积为S,求S关于滑行时间的函数关系式,并写出相应自变量的取值范围;(4)在(3)的条件下,抛物线与正方形一起平移,到顶点落在轴上时,求抛物线上两点间的抛物线弧所扫过的面积例5如图,已知抛物线y=ax2+bx3过点A(1,0),B(3,0),点M、N为抛物线上的动点,过点M作MDy轴,交直线BC于点D,交x轴于点E过点N作NFx轴,垂足为点F(1)求二次函数y=ax2+bx3的表达式;(2)若M点是抛物线上对称轴右侧的点,且四边形MNFE为正

    4、方形,求该正方形的面积;(3)若M点是抛物线上对称轴左侧的点,且DMN=90,MD=MN,请直接写出点M的横坐标来源:【变式训练】1如图,为坐标原点,边长为的正方形的顶点在轴的正半轴上,将正方形OABC绕顶点顺时针旋转,使点落在某抛物线的图象上,则该抛物线的解析式为( )A B C D2如图,边长为1的正方形ABCD顶点A(0,1),B(1,1);一抛物线y=ax2+bx+c过点M(1,0)且顶点在正方形ABCD内部(包括在正方形的边上),则a的取值范围是()A2a1 B2a C1a D1a3如图,在平面直角坐标系中,二次函数yax2c(a0)的图象过面积为的正方形ABOC的三个顶点A、B、C

    5、,则a的值为 4如图,正方形的顶点,与正方形的顶点,同在一段抛物线上,且抛物线的顶点同时落在和轴上,正方形边与同时落在轴上,若正方形的边长为,则正方形的边长为_5如图4,已知抛物线y=ax2+bx+c(a0)经过点A(2,0),B(6,0),交y轴于点C,且SABC=16(1)求点C的坐标;(2)求抛物线的解析式及其对称轴;(3)若正方形DEFG内接于抛物线和x轴(边FG在x轴上,点D,E分别在抛物线上),求S正方形DEFG6如图1:矩形OABC的顶点A、B在抛物线上,OC在轴上,且来源:Z&X&X&K(1)求抛物线的解析式及抛物线的对称轴(2)如图2,边长为的正方形ABCD的边CD在轴上,A

    6、、B两点在抛物线上,请用含的代数式表示点B的坐标,并求出正方形边长的值7如图,正方形OABC的边长为4,对角线相交于点P,顶点A、C分别在x轴、y轴的正半轴上,抛物线L经过0、P、A三点,点E是正方形内的抛物线上的动点.(1)点P的坐标为_(2)求抛物线L的解析式.(3)求OAE与OCE的面积之和的最大值.8如图1,在直角坐标系中,已知点A(0,2)、点B(2,0),过点B和线段OA的中点C作直线BC,以线段BC为边向上作正方形BCDE. (1)填空:点D的坐标为( ),点E的坐标为( ).(2)若抛物线经过A、D、E三点,求该抛物线的解析式.(3)若正方形和抛物线均以每秒个单位长度的速度沿射

    7、线BC同时向上平移,直至正方形的顶点E落在y轴上时,正方形和抛物线均停止运动. 在运动过程中,设正方形落在y轴右侧部分的面积为s,求s关于平移时间t(秒)的函数关系式,并写出相应自变量t的取值范围.运动停止时,求抛物线的顶点坐标.9如图,抛物线y=x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD(1)求抛物线的解析式及点D的坐标;(2)点F是抛物线上的动点,当FBA=BDE时,求点F的坐标;来源:Zxxk.Com(3)若点P是x轴上方抛物线上的动点,以PB为边作正方形PBFG,随着点P的运

    8、动,正方形的大小、位置也随着改变,当顶点F或G恰好落在y轴上时,请直接写出点P的横坐标10如图,已 知直线交坐标轴于两点,以线段为边向上作正方形,过点的抛物线与直线另一个交点为(1)请直接写出点的坐标;(2)求抛物线的解析式;(3)若正方形以每秒个单位长度的速度沿射线下滑,直至顶点落在x轴上时停止设正方形落在轴下方部分的面积为,求关于滑行时间的函数关系式,并写出相应自变量的取值范围;(4)在(3)的条件下,抛物线与正方形一起平移,同时停止,求抛物线上两点间的抛物线弧所扫过的面积11如图,抛物线y=ax2+bx(a0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C

    9、,D在抛物线上设A(t,0),当t=2时,AD=4(1)求抛物线的函数表达式(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离12如图,四边形ABCO为矩形,点A在x轴上,点C在y轴上,且点B的坐标为(2,1),将此矩形绕点O逆时针旋转90得矩形DEFO,抛物线y=-x2+bx+c过B、E两点.(1)求此抛物线的函数解析式.(2)将矩形DEFO向右平移,当点E的对应点E在抛物线上时,求线段DF扫过的面积.(3)若将矩形ABCO向上平移d个单位

    10、长度后,能使此抛物线的顶点在此矩形的边上,求d的值.13如图1,平面直角坐标系中,点,OC=8,若抛物线平移后经过C,D两点,得到图1中的抛物线W(1)求抛物线W的表达式及抛物线W与轴另一个交点的坐标;(2)如图2,以OA,OC为边作矩形OABC,连结OB,若矩形OABC从O点出发沿射线OB方向匀速运动,速度为每秒1个单位得到矩形,求当点落在抛物线W上时矩形的运动时间;(3)在(2)的条件下,如图3,矩形从O点出发的同时,点P从出发沿矩形的边以每秒个单位的速度匀速运动,当点P到达时,矩形和点P同时停止运动,设运动时间为秒请用含的代数式表示点P的坐标;已知:点P在边上运动时所经过的路径是一条线段

    11、,求点P在边上运动多少秒时,点D到CP的距离最大14如图,将矩形OABC置于平面直角坐标系xOy中,A(,0),C(0,2)(1)抛物线y=-x2+bx+c经过点B、C,求该抛物线的解析式;(2)将矩形OABC绕原点顺时针旋转一个角度(090),在旋转过程中,当矩形的顶点落在(1)中的抛物线的对称轴上时,求此时这个顶点的坐标;(3)如图(2),将矩形OABC绕原点顺时针旋转一个角度(0180),将得到矩形OABC,设AC的中点为点E,连接CE,当= 时,线段CE的长度最大,最大值为 15如图,矩形的边OA在x轴上,边OC在y轴上,点B的坐标为(10,8),沿直线OD折叠矩形,使点A正好落在BC

    12、上的E处,E点坐标为(6,8),抛物线y=ax2+bx+c经过O、A、E三点(1)求此抛物线的解析式;(2)求AD的长;(3)点P是抛物线对称轴上的一动点,当PAD的周长最小时,求点P的坐标16如图,抛物线与轴交于,两点(点在轴的正半轴上),与轴交于点,矩形的一条边在线段上,顶点,分别在线段,上求点,的坐标;若点的坐标为,矩形的面积为,求关于的函数表达式,并指出的取值范围;当矩形的面积取最大值时,求直线的解析式;在射线上取一点,使,若点恰好落在该抛物线上,则_17如图,在平面直角坐标系中,矩形OABC的顶点O为坐标原点,顶点A、C的坐标分别为(0,)、(2,0),将矩形OABC绕点O顺时针旋转

    13、45得到矩形OABC,边AB与y轴交于点D,经过坐标原点的抛物线y=ax2+bx同时经过点A、C(1)求抛物线所对应的函数表达式;(2)写出点B的坐标;来源:(3)点P是边OC上一点,过点P作PQOC,交抛物线位于y轴右侧部分于点Q,连接OQ、DQ,设ODQ的面积为S,当直线PQ将矩形OABC的面积分为1:3的两部分时,求S的值;(4)保持矩形OABC不动,将矩形OABC沿射线CO方向以每秒1个单位长度的速度平移,设平移时间为t秒(t0)当矩形OABC与矩形OABC重叠部分图形为轴对称多边形时,直接写出t的取值范围18在直角坐标系中,点A是抛物线yx2在第二象限上的点,连接OA,过点O作OBO

    14、A,交抛物线于点B,以OA、OB为边构造矩形AOBC(1)如图1,当点A的横坐标为时,矩形AOBC是正方形;(2)如图2,当点A的横坐标为时,来源:Z#xx#k.Com求点B的坐标;将抛物线yx2作关于x轴的轴对称变换得到抛物线yx2,试判断抛物线yx2经过平移交换后,能否经过A,B,C三点?如果可以,说出变换的过程;如果不可以,请说明理由19如图,已知抛物线与直线交于点,求抛物线的解析式 点是抛物线上、之间的一个动点,过点分别作轴、轴的平行线与直线交于点、,以、为边构造矩形,设点的坐标为,求,之间的关系式 将射线绕原点逆时针旋转后与抛物线交于点,求点的坐标20如图,在平面直角坐标系中,矩形OABC的顶点A(0,3)、C(1,0)将矩形OABC绕原点O顺时针方向旋转90o,得到矩形OABC设直线BB与x轴交于点M、与y轴交于点N,抛物线经过点C、M、N解答下列问题:(1)求直线BB的 函数解析式; (2)求抛物线的解析式; (3)在抛物线上求出使SPB C=S矩形OABC的所有点P的坐标

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:专题09 二次函数与矩形正方形存在型问题-2019版突破中考数学压轴之学霸秘笈大揭秘(学生版)学霸冲冲冲shop348121278.taobao.com.doc
    链接地址:https://www.ketangku.com/wenku/file-513222.html
    相关资源 更多
  • (新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx(新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx
  • (新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf(新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc
  • (全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc(全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc
  • (全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc(全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1