分享
分享赚钱 收藏 举报 版权申诉 / 4

类型数学人教A版必修4例题与探究:2.2平面向量的线性运算 WORD版含解析.doc

  • 上传人:a****
  • 文档编号:528070
  • 上传时间:2025-12-09
  • 格式:DOC
  • 页数:4
  • 大小:181KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    数学人教A版必修4例题与探究:2.2平面向量的线性运算 WORD版含解析 学人 必修 例题 探究 2.2 平面 向量 线性 运算 WORD 解析
    资源描述:

    1、典题精讲例1已知向量a、b,比较|a+b|与|a|+|b|的大小.思路解析:因为向量包含长度和方向,所以在比较向量长度的大小时,要考虑其方向.解:(1)当a、b至少有一个为零向量时,有|a+b|=|a|+|b|;(2)当a、b为非零向量且a、b不共线时,有|a+b|a|+|b|;当a、b为非零向量且a、b同向共线时,有|a+b|=|a|+|b|;当a、b为非零向量且a、b异向共线时,有|a+b|a|+|b|.绿色通道:解答本题可利用向量加法的三角形法则,作出图形辅助解答;关键是准确、恰当地进行分类,分别处理.变式训练已知向量a,b,讨论|a-b|、|a|+|b|和|a|-|b|的大小.思路解析

    2、:(1)当a、b至少有一个为零向量时,有|a-b|=|a|+|b|=|a|-|b|;(2)当a,b为非零向量,且a,b不共线时,有|a|+|b|a-b|a|-|b|;(三角形两边之和大于第三边,三角形两边之差小于第三边的向量表示)当a,b为非零向量,且a,b同向共线时,|a|+|b|a+b|=|a|-|b|;当a,b为非零向量,且a,b异向共线时,|a|+|b|=|a+b|a|-|b|.答案:|a|+|b|a-b|a|-|b|,结合|a|+|b|a+b|a|-|b|因此有|a|+|b|ab|a|-|b|.例2化简下列各式:(1);(2)(4a-3b)+b-(6a-7b).思路分析:对于(1),

    3、可以利用三角形法则对向量进行分解;对于(2)利用向量线性运算的运算法则化简.解:(1)+=+(=+)=+=0+2=2.(2)(4a-3b)+ b- (6a-7b)= (4a-3b+b-a+b)=(4-)a+(-3+)b=(a-b)=a-b.绿色通道:向量加法的三角形法则可以推广为多边形法则,另一方面可以把任何一个向量用两个向量的和或差来表示,使用向量的数乘的结合律与分配律可以化简向量式子.变式训练(2006全国高考卷,理9)设平面向量a1、a2、a3的和a1+a2+a3=0.如果向量b1、b2、b3,满足|bi|=2|ai|,且ai顺时针旋转30后与bi同向,其中i=1,2,3,则( )A.-

    4、b1+b2+b3=0 B.b1-b2+b3=0C.b1+b2-b3=0 D.b1+b2+b3=0思路解析:向量a1、a2、a3的和a1+a2+a3=0.向量a1、a2、a3顺时针旋转30后与b1、b2、b3同向,且|bi|=2|ai|,b1+b2+b3=0.答案:D例3已知两个非零向量e1和e2不共线,且ke1+e2和e1+ke2共线,求实数k的值.思路分析:因为ke1+e2和e1+ke2是共线向量,所以一定存在实数,使得ke1+e2=(e1+ke2)成立.解:ke1+e2和e1+ke2共线,存在实数,使得ke1+e2=(e1+ke2).(k-)e1=(k-1)e2.e1和e2不共线,k=1.

    5、绿色通道:本题从正反两方面运用了向量数乘的几何意义,利用共线得到关于k的方程,用待定系数法解决问题.变式训练若3m+2n=a,m-3n=b,其中a、b是已知向量,求m、n.思路分析:此题可把已知条件看作向量m、n的方程,通过方程组的求解获得m、n.解:记3m+2n=a m-3n=b 3,得3m-9n=3b. -,得11n=a-3b.n=a-b. 将代入,有m=b+3n=a+b.例4一艘船以5 km/h的速度向垂直于对岸的方向行驶,航船实际航行方向与水流方向成30角,求水流速度和船实际速度.思路分析:本题要求的是速度,而速度是向量,因此可以用向量表示速度,然后用向量加法合成速度即可.解:如图2-

    6、2-6,表示水流速度,表示船垂直于对岸方向行驶的速度,表示船的实际速度,AOC=30,|= 5 km/h,图2-2-6四边形ABCD为矩形,|=|cot30=,|=10.绿色通道:用向量法解决物理问题的步骤为:(1)用向量表示物理量;(2)进行向量运算;(3)回扣物理问题,解决问题.变式训练一架执行救灾任务的飞机从A地按北偏西30的方向飞行300 km后到达B地,然后向C地飞行.已知C地在A地北偏东60的方向处,且A、C两地相距300 km,求飞机从B地向C地飞行的方向及B、C两地的距离.思路分析:首先根据题意作出图形,如图2-2-7,然后由A地确定B、C两地的方位与距离.图2-2-7解:根据

    7、题意和图形,可知BAC=90,|=|=300 km,则可得|=300km;又由于ABC=45,A地在B地东偏南60的方向处,可知C地在B地东偏南15的方向处.所以飞机从B地向C地飞行的方向为C地在B地东偏南15的方向处.B、C两地的距离为300 km.问题探究问题1已知n个向量,依次把这n个向量首尾相连.以第一个向量的起点为起点,第n个向量的终点为终点的向量叫做这n个向量的和向量.试探究A1、A2、A3是平面内不共线的三点,则等于什么?对于平面上不共线的四点A1、A2、A3、A4上述结论是否成立?等于什么?导思:求多个向量的和,需要连续使用三角形法则,这也可以看作是应用了多边形法则.对向量求和

    8、的多边形法则应明确:(1)多边形法则适用于两个或两个以上的向量和的计算,三角形法则是多边形法则的特殊情形;(2)n个向量的和的结果仍是一个向量;(3)法则的要领是“头尾相接,头是头,尾是尾”,与向量加法的三角形法则相同.探究:由平行四边形法则可知,=0.类似的,根据向量求和的多边形法则有,即=0.对这个结论的更一般的形式,即n个向量顺次首尾相接,组成一条封闭的折线,其和为零向量,也就不难理解了,即=0.问题2三人夺球的游戏的规则是:在小球上均匀装上三条绳子,由三人在一水平面上分别拉绳,要求每两人与球连线夹角相等,得到小球者为胜.现有甲、乙、丙三人玩此游戏,若甲、乙两人的力量相同,均为a N,试

    9、探究丙需要多少力量小球才静止?若甲、乙两人的力量不等,则小球有可能静止吗?导思:互为相反向量的两个向量的和为0,在物理中可以理解成两个力的合力为0.解决本题首先要审好题,能从题目中提炼出数学模型,进而利用数学知识解决,这是解决文字题或应用题最关键的一个环节.探究:本题主要考查向量加法法则及相反向量的定义.设甲、乙、丙三人作用于小球的力分别为a、b、c,根据题意,可知a、b、c三个向量两两夹角为120,可先计算a+b,由于|a|=|b|,易求|a+b|=|c|,且a+b平分a、b所成的角,即方向与c相反,要使小球不动,则c=-(a+b),所以丙需要与甲、乙相同的力量,小球就会静止.若甲、乙两人力量不等,根据向量加法的平行四边形法则,a+b的方向不可能与c相反,也就是说a+b与c不可能是相反向量,所以小球不可能静止.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:数学人教A版必修4例题与探究:2.2平面向量的线性运算 WORD版含解析.doc
    链接地址:https://www.ketangku.com/wenku/file-528070.html
    相关资源 更多
  • (新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx(新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx
  • (新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf(新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc
  • (全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc(全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc
  • (全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc(全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1