数学北师大版必修3教案: 第三章概率2.3 WORD版含解析.DOC
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学北师大版必修3教案: 第三章概率2.3 WORD版含解析 数学 北师大 必修 教案 第三 概率 2.3 WORD 解析
- 资源描述:
-
1、2.3 互斥事件整体设计教学分析 教科书通过实例定义了互斥事件、对立事件的概念. 教科书通过类比频率的性质,利用频率与概率的关系得到了概率的几个基本性质,要注意这里的推导并不是严格的数学证明,仅仅是形式上的一种解释,因为频率稳定在概率附近仅仅是一种描述,没有给出严格的定义,严格的定义,要到大学里的概率统计课程中才能给出.三维目标(1)正确理解事件的包含、并事件、交事件、相等事件,以及互斥事件、对立事件的概念;通过事件的关系、运算与集合的关系、运算进行类比学习,培养学生的类比与归纳的数学思想.(2)概率的几个基本性质:必然事件概率为1,不可能事件概率为0,因此0P(A)1;当事件A与B互斥时,满
2、足加法公式:P(AB)=P(A)+P(B);若事件A与B为对立事件,则AB为必然事件,所以P(AB)=P(A)+P(B)=1,于是有P(A)=1-P(B).(3)正确理解和事件与积事件,以及互斥事件与对立事件的区别与联系,通过数学活动,了解数学与实际生活的密切联系,感受数学知识应用于现实世界的具体情境,从而激发学习数学的情趣.重点难点教学重点:概率的加法公式及其应用.教学难点:事件的关系与运算.课时安排1课时教学过程导入新课思路1.体育考试的成绩分为四个等级:优、良、中、不及格,某班50名学生参加了体育考试,结果如下:优85分及以上9人良7584分15人中6074分21人不及格60分以下5人
3、在同一次考试中,某一位同学能否既得优又得良? 从这个班任意抽取一位同学,那么这位同学的体育成绩为“优良”(优或良)的概率是多少? 为解决这个问题,我们学习概率的基本性质,教师板书课题.思路2.(1)集合有相等、包含关系,如1,3=3,1,2,42,3,4,5等;(2)在掷骰子试验中,可以定义许多事件如:C1=出现1点,C2=出现2点,C3=出现1点或2点,C4=出现的点数为偶数,.师生共同讨论:观察上例,类比集合与集合的关系、运算,你能发现事件的关系与运算吗?这就是本堂课要讲的知识概率的基本性质.思路3.全运会中某省派两名女乒乓球运动员参加单打比赛,她们夺取冠军的概率分别是和,则该省夺取该次冠
4、军的概率是+,对吗?为什么?为解决这个问题,我们学习概率的基本性质.推进新课新知探究提出问题 在掷骰子试验中,可以定义许多事件如:C1=出现1点,C2=出现2点,C3=出现3点,C4=出现4点,C5=出现5点,C6=出现6点,D1=出现的点数不大于1,D2=出现的点数大于3,D3=出现的点数小于5,E=出现的点数小于7,F=出现的点数大于6,G=出现的点数为偶数,H=出现的点数为奇数,.类比集合与集合的关系、运算说明这些事件的关系和运算,并定义一些新的事件.(1)如果事件C1发生,则一定发生的事件有哪些?反之,成立吗?(2)如果事件C2发生或C4发生或C6发生,就意味着哪个事件发生?(3)如果
5、事件D2与事件H同时发生,就意味着哪个事件发生?(4)事件D3与事件F能同时发生吗?(5)事件G与事件H能同时发生吗?它们两个事件有什么关系?活动:学生思考或交流,教师提示点拨,事件与事件的关系要判断准确,教师及时评价学生的答案.讨论结果:(1)如果事件C1发生,则一定发生的事件有D1,E,D3,H,反之,如果事件D1,E,D3,H分别成立,能推出事件C1发生的只有D1.(2)如果事件C2发生或C4发生或C6发生,就意味着事件G发生.(3)如果事件D2与事件H同时发生,就意味着C5事件发生.(4)事件D3与事件F不能同时发生.(5)事件G与事件H不能同时发生,但必有一个发生.由此我们得到事件A
6、,B的关系和运算如下:如果事件A发生,则事件B一定发生,这时我们说事件B包含事件A(或事件A包含于事件B),记为BA(或AB),不可能事件记为,任何事件都包含不可能事件.如果事件A发生,则事件B一定发生,反之也成立,(若BA同时BA),我们说这两个事件相等,即A=B.如C1=D1.如果某事件发生当且仅当事件A发生或事件B发生,则称此事件为事件A与B的并事件(或和事件),记为AB或A+B.如果某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与B的交事件(或积事件),记为AB或AB.如果AB为不可能事件(AB=),那么称事件A与事件B互斥,即事件A与事件B在任何一次试验中不会同时发生.
7、如果AB为不可能事件,AB为必然事件,那么称事件A与事件B互为对立事件,即事件A与事件B在一次试验中有且仅有一个发生.继续依次提出以下问题:(1)概率的取值范围是多少?(2)必然事件的概率是多少?(3)不可能事件的概率是多少?(4)互斥事件的概率应怎样计算?(5)对立事件的概率应怎样计算?活动:学生根据试验的结果,结合自己对各种事件的理解,教师引导学生,根据概率的意义:(1)由于事件的频数总是小于或等于试验的次数,所以,频率在01之间,因而概率的取值范围也在01之间.(2)必然事件是在试验中一定要发生的事件,所以频率为1,因而概率是1.(3)不可能事件是在试验中一定不发生的事件,所以频率为0,
8、因而概率是0.(4)当事件A与事件B互斥时,AB发生的频数等于事件A发生的频数与事件B发生的频数之和,互斥事件的概率等于互斥事件分别发生的概率之和.(5)事件A与事件B互为对立事件,AB为不可能事件,AB为必然事件,则AB的频率为1,因而概率是1,由(4)可知事件B的概率是1与事件A发生的概率的差.讨论结果:(1)概率的取值范围是01之间,即0P(A)1.(2)必然事件的概率是1.如在掷骰子试验中,E=出现的点数小于7,因此P(E)=1.(3)不可能事件的概率是0,如在掷骰子试验中,F=出现的点数大于6,因此P(F)=0.(4)当事件A与事件B互斥时,AB发生的频数等于事件A发生的频数与事件B
9、发生的频数之和,互斥事件的概率等于互斥事件分别发生的概率之和,即P(AB)=P(A)+P(B),这就是概率的加法公式,也称互斥事件的概率的加法公式.(5)事件A与事件B互为对立事件,AB为不可能事件,AB为必然事件,P(AB)=1.所以1=P(A)+P(B),P(B)=1-P(A),P(A)=1-P(B).如在掷骰子试验中,事件G=出现的点数为偶数与H=出现的点数为奇数互为对立事件,因此P(G)=1-P(H). 上述这些都是概率的性质,利用这些性质可以简化概率的计算,下面我们看它们的应用.应用示例思路1例1 在课本2古典概型的例1中,随机地从2个箱子中各取1个质量盘,下面的事件A和事件B是否是
10、互斥事件?(1)事件A=“总质量为20 kg”,事件B=“总质量为30 kg”;(2)事件A=“总质量为7.5 kg”,事件B=“总质量超过10 kg”;(3)事件A=“总质量不超过10 kg”,事件B=“总质量超过10 kg”;(4)事件A=“总质量为20 kg”,事件B=“总质量超过10 kg”.解:在(1)(2)(3)中,事件A与事件B不能同时发生,因此事件A与事件B是互斥事件.对于(4)中的事件A和事件B,随机地从2个箱子中各取1个质量盘,当总质量为20 kg时,事件A与事件B同时发生,因此,事件A与事件B不是互斥事件.点评:判断互斥事件和对立事件,要紧扣定义,搞清互斥事件和对立事件的
11、关系,互斥事件是对立事件的前提.变式训练1.一个射手进行一次射击,试判断下列事件哪些是互斥事件?哪些是对立事件?事件A:命中环数大于7环; 事件B:命中环数为10环;事件C:命中环数小于6环; 事件D:命中环数为6、7、8、9、10环.活动:教师指导学生,要判断所给事件是对立事件还是互斥事件,首先将两个概念的联系与区别弄清楚,互斥事件是指不可能同时发生的两事件,而对立事件是建立在互斥事件的基础上,两个事件中一个不发生,另一个必发生.解:A与C互斥(不可能同时发生),B与C互斥,C与D互斥,C与D是对立事件(至少一个发生).2.从一堆产品(其中正品与次品都多于2件)中任取2件,观察正品件数与次品
12、件数,判断下列每件事件是不是互斥事件,如果是,再判断它们是不是对立事件.(1)恰好有1件次品和恰好有2件次品;(2)至少有1件次品和全是次品;(3)至少有1件正品和至少有1件次品;(4)至少有1件次品和全是正品.解:依据互斥事件的定义,即事件A与事件B在一定试验中不会同时发生,知(1)恰好有1件次品和恰好有2件次品不可能同时发生,因此它们是互斥事件,又因为它们的并不是必然事件,所以它们不是对立事件.同理可以判断:(2)中的2个事件不是互斥事件,也不是对立事件;(3)中的2个事件既不是互斥事件也不是对立事件;(4)中的2个事件既互斥又对立.例2 从一箱产品中随机地抽取一件产品,设事件A=“抽到的
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
