河北省石家庄市2018届高三毕业班上学期教学质量检测数学(文)试题 WORD版含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 河北省石家庄市2018届高三毕业班上学期教学质量检测数学文试题 WORD版含解析 河北省 石家庄市 2018 届高三 毕业班 上学 教学质量 检测 数学 试题 WORD 解析
- 资源描述:
-
1、石家庄市2018届高中毕业班教学质量检测(一)文科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,则( )A. B. C. D. 【答案】C【解析】 ,选C.2. 若复数满足,其中为虚数单位,则共轭复数( )A. B. C. D. 【答案】B【解析】 ,故选B.3. 已知命题,则是成立的( )条件A. 充分不必要 B. 必要不充分 C. 充要 D. 既不充分有不必要【答案】B【解析】 ,因为,所以是成立的必要不充分条件,选B 4. 已知某厂的产品合格率为0.8,现抽出10件产品检查,则下列说法正确的是( )A. 合格
2、产品少于8件 B. 合格产品多于8件C. 合格产品正好是8件 D. 合格产品可能是8件【答案】D【解析】由已知中某厂的产品合格率为,则抽出件产品检査合格产品约为件,根据概率的意义,可得合格产品可能是件,故选D.5. 在中,点在边上,且,设,则 ( )A. B. C. D. 【答案】B【解析】, ,故选B.6. 当时,执行如图所示的程序框图,则输出的值为 ( )A. 9 B. 15 C. 31 D. 63【答案】C【解析】由程序框图可知,退出循环,输出的值为,故选C.【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框
3、;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.7. 若,函数的图像向右平移个单位长度后与函数图像重合,则的最小值为( )A. B. C. D. 【答案】B【解析】向右平移个单位可得,因为函数的图象向右平移个单位长度后与函数图象重合,时,的最小值为,故选B.8. 已知奇函数,当时单调递增,且,若,则的取值范围为( )A. B. C. D. 【答案】A【解析】为奇函
4、数,时,单调递增,时,也单调递增,由,得,的取值范围为或,故选A.9. 如图,网格纸上的小正方形的边长为1,粗线条表示的是某三棱锥的三视图,则该三棱锥的四个面中面积最小是 ( )A. B. C. 2 D. 【答案】C【解析】由三视图可知,三棱锥的直观图如图,图中正方体棱长为,由图知,四面中面积最小值是,故选C.10. 双曲线 的左、右焦点分别为,过作倾斜角为的直线与轴和双曲线的右支分别交于两点,若点平分线段,则该双曲线的离心率是( )A. B. C. 2 D. 【答案】B【解析】双曲线 的左焦点为,直线的方程为,令,则,即,因为平分线段,根据中点坐标公式可得 ,代入双曲线方程,可得,由于,则,
5、化简可得,解得,由,解得,故选B.【方法点晴】本题主要考查利用双曲线的简单性质求双曲线的离心率,属于中档题.求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.求离心率问题应先将用有关的一些量表示出来,再利用其中的一些关系构造出关于的等式,从而求出的值.本题是利用点到直线的距离等于圆半径构造出关于的等式,最后解出的值.11. 已知是函数的所有零点之和,则的值为( )A. 3 B. 6 C. 9 D. 12【答案】D【解析】因为 所以关于对称由图知,有8个零点
6、,所以所有零点之和为12,选D点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等12. 定义:如果函数在区间上存在 ,满足,则称函数是在区间上的一个双中值函数,已知函数是区间上的双中值函数,则实数的取值范围是 ( )A. B. C. D. 【答案】A【解析】在区间存在,满足 ,方程在区间有两个解,令,则,解得实数的取值范围是,故选A.【方法点睛】本题考查导数的运算法则、一元二次方程根的分布、新定义问题及数形结合思想
7、,属于难题.新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.本题定义“双中值函数”达到考查导数的运算法则、一元二次方程根的分布的目的.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 抛物线的准线方程是_【答案】【解析】因为 准线方程是 ,所以抛物线的准线方程是14. 若满足约束条件,则的最大值是_【
8、答案】【解析】,画出约束条件表示的可行域,如图,平移直线,当直线经过点 时,直线在 轴上的截距最小,有最大值,由可得,有最大值为 ,故答案为.【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.15. 直三棱柱的各顶点都在同一球面上,若,则此球的表面积等于_【答案】【解析】设三角形ABC外接圆圆心为O1,半径为r,则 因此球半径为 点睛
9、:空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解(2)若球面上四点构成的三条线段两两互相垂直,且,一般把有关元素“补形”成为一个球内接长方体,利用求解16. 如图所示,平面四边形的对角线交点位于四边形的内部,当变化时,对角线的最大值为_【答案】【解析】设,则由余弦定理可得,由正弦定理可得, ,时,有最大值 ,取得最大值为,故答案为.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知数列是各项均为正数的等比数列
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-532627.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
